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ABSTRACT 

We prove certain identities between Bessel functions at tached to irre- 

ducible unitary representations of PGL2(R) and Bessel functions at- 
tached to irreducible unitary representations of the double cover of 

SL2(R).  These identities give a correspondence between such repre- 

sentations which turns out to be the Waldspurger correspondence. In 
the process we prove several regularity theorems for Bessel distributions 

which appear in the relative trace formula. In the heart of the proof lies 
a classical result of Weber and Hardy on a Fourier transform of classical 

Bessel functions. This paper constitutes the local (real) spectral theory of 

the relative trace formula for the Waldspurger correspondence for which 

the global part  was developed by Jacquet. 
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1. Introduct ion  

A classical result of Hardy and Weber states that the Fourier transform of the 
function x-1/2J~(x 1/2) (defined for x > 0) is given up to some exponential 

factor by x-1/2J~/~(ax -1). Here Jr is the classical J-Bessel function and a is a 
constant depending on the exponential character defining the Fourier transform 

(see Appendix 3 for the precise statement). In this paper we will show that 
this identity can be used to realize the Shimura-Waldspurger correspondence 

between representations of PGL2 (R) and genuine representations of the double 

cover of SL2(R). Roughly speaking, the Shimura correspondence maps cusp 

forms of weight k + 1/2 to cusp forms of weight 2k where k is a positive integer. 
The Shintani-Waldspurger correspondence is the inverse map. A cusp form of 
weight 2k (and trivial central character) has an infinite component which is a 
discrete series representation of PGL2(R). The Bessel function of this discrete 
series is related t o  x-1/2J2k_ 1 (xl/2). The infinite component of a cusp form of 

weight k + 1/2 is a discrete series representation of the double cover of SL2(ICt) 
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whose Bessel function is related to x -1/2 Jk-1/2 (ax -1). Hence the Hardy-Weber 

identity realizes the Shimura-Waldspurger correspondence! 

More precisely, the correspondence will be realized by identities between 

Bessel functions attached to these representations. These functions will be func- 

tions on the group whose form will involve classical Bessel functions. 

This result fits into the theory of the relative trace formula developed by 

Jacquet and constitutes the local ("real") spectral theory that complements the 

global theory in [11]. Completely analogous results for the p-adic case were 

obtained in [4]. This is the first study of the local ("real") spectral theory of the 

relative trace formula from the point of view of Bessel function identities. This 

theory and the corresponding p-adic theory are used in [3] to study the central 

value of PGL2 automorphic L-functions. 

We now give a sample of the Bessel identities that we obtain. Let 

1 : x E R  , A =  b :a, b e  . 

Let 7r be an infinite-dimensional unitary irreducible representation of G = 

GL2 (R) with a trivial central character (that is, a representation of PGL2 (R)). 

Let ¢1 (X) ----- ¢2~'ix, which we view as a character on N. We attach to 7r a function 

i~,v 1 on G which is left invariant by A and right (¢1, N) equivariant, i~,~1 is 

real analytic on an open set in G (basically, the open Bruhat cell). Let a be 

an irreducible genuine unitary representation of S, the double cover of SL2(R). 

We attach to a a function J~,~l on :~ which is left and right (~bl, N) equivariant. 

j~,¢~ is real analytic on the open Bruhat cell in S. Our main theorem of this 
paper (see Theorem 19.2) is the following: 

THEOREM 1.1: Let 7r be as above. There exists a unique a = a(Tr) as above 

such that for every x > 0 we have 

(1.1) i ~ , ~ (  x /4  10) v/2e~/4~(Tr' 1/2) • 
1 = L(zr, 1/2) e 4 ~ / X x l / 2 J ~ ' ¢ l ( x O - 1 0 Z )  " 

Here L(Tr, 1/2) and e(r, 1/2) are the L factor and epsilon factor attached to 

r by [10]. We remark that the values of i,~,¢~ above determine 7r, hence the 

correspondence is one to one. 

The above identities are proved via a case by case computation of i~,¢~ and 

jo,¢~ (see Corollary 8.4 and Section 18). In practice we prove a more general 

identity between i~,¢ and j~,¢, for any two nontrivial characters ¢ and ~'. The 

correspondence 7r ~ a(~r) is dependent on ~ and turns out to be exactly the 

Waldspurger correspondence 7r ~ O(Ir, ¢'). We recall that for one fixed 7r there 
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are exactly two possible a(zr) depending on ¢'. The image of all possible a(Tr) if 

we vary ~ and ¢~ gives all the genuine unitary duals of S' not including the Well 

representations r~ (see [22] p. 225 and Proposition 5) which are in the image of 

the trivial representation under the theta correspondence. 

We remark that i~,¢ and j~,¢ are attached to 7r and a via Bessel distributions 

which are analogs of the more famous character distributions. For a general 

discussion on such distributions, see Appendix 4. Our strategy for obtaining 

the above equalities is the following. We consider four different types of distri- 

butions: 

(a) Bessel distributions for G = GL2 (R). 

(b) Bessel distributions for G, the double cover of G. 

(c) Bessel distributions for S. 

(d) Relative Bessel distributions for G. 

The distributions in (a), (b), (c) are all equivariant under (N, ~b) from both 

sides. The distributions in (d) are invariant on the left under A and equivariant 

on the right under (N, ¢). We prove a regularity theorem for each distribution. 

We recall that a regularity theorem proves that a given distribution is given by 

a locally integrable function. These are the functions i~,¢ and j~,¢ mentioned 

above. The relations between the distributions imply that the relative Bessel 
function i~,¢ on G is a certain Fourier transform of the Bessel function j~r,¢ on 

G while the Bessel function j~,¢ on S is a restriction of a Bessel function of a 

representation which is induced from a to G. The advantage of starting from 

representations of G and G is that these representations have a Kirillov model 

and it is possible to describe the action of the Weyl element in the Kirillov model 

via a kernel formula. This is done in [5] for G. We give a proof of this formula 

in Appendix 2. A proof of the formula for the case of the principal series using 

a Mellin transform approach was obtained by Motohashi in [15]. (See also [20], 

chapter VII section 7.) In Section 13 we prove a new kernel formula for G. 

The kernel functions thus obtained induce functions on the group. Using 

these kernel formulas and an inner product formula for the Kirillov model, we 

show that the Bessel distributions for G and G (cases (a) and (b)) are given by 

their respective Bessel functions. 

We also use the relation between the distributions in (a) and the distributions 

in (d) to get a relation between their Bessel functions. Using this relation 

we can compute the relative Bessel function i~,¢ via a Fourier transform and 

the Hardy-Weber identities mentioned above. We also show that the Bessel 

functions attached to distributions in (c) are restrictions of Bessel functions 
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associated to distributions in (d). We compute them explicitly and the Bessel 

identities follow immediately. 

We finish by showing that the Bessel identity (1.1) gives an identity between 

the distributions themselves (see Theorem 19.4). This identity is crucial for the 

applications to special values of L-functions. 

Our paper is organized as follows. In Section 2 we fix some notations and 

prove a Lemma on Whittaker functions. In Section 3 we introduce the Bessel and 

relative Bessel distributions on G and show that they are given by functions, 

the Bessel and relative Bessel functions, on an open set of G. In Section 4 

we give bounds on certain orbital integrals which we shall need for the local 

integrability of the various Bessel functions. We also give an explicit asymptotic 

expansion for the orbital integrals coming from the relative Bessel distributions. 

In Section 5 we prove a regularity theorem for the relative Bessel distributions. 

In Section 6 we recall the kernel formula of [5]. We extend the kernel function 

to a Bessel function on G and show that this function is locally integrable. In 

Section 7 we show that the Bessel distributions are given by the Bessel functions 

which were defined in Section 6. In Section 8 we prove a Fourier transform type 

relation between the Bessel functions and relative Bessel functions. We also give 

explicit formulas for these relative Bessel functions. In Section 9 we introduce 

some notation for G, the double cover of GL(2). In Section 10 we describe 

the unitary dual of S following [7], [21], [22]. In Section 11 we give a kernel 

formula in a certain model for an irreducible genuine unitary representation of 

S. In Section 12 and Section 13 we translate this kernel formula into a kernel 

formula in the Kirillov model of representations of G. We also use this kernel 

function to define a Bessel function on G and give explicit formulas for these 

functions. In Section 14 we prove that the Bessel functions defined in Section 13 

are locally integrable. In Section 15 we provide an inner product formula in the 

Kirillov model of irreducible unitary representations of G and in Section 16 we 

use the inner product formula for irreducible representations of G to get inner 

product formulas for representations of S. In Section 17 we use the results from 

previous sections to show that the Bessel distributions on G are given by Bessel 

functions. In Section 18 we use the results from Section 17 to show that the 

Bessel distributions on S are given by Bessel functions. Finally, in Section 19 

we prove the Bessel identities for functions and distributions. 

We also provide Appendix 1 in which we give some bounds on classical K- 

Bessel functions. In Appendix 2 we prove the kernel formula of Cogdell and 

Piatetski-Shapiro [5]. In Appendix 3 we compute the Fourier transform of cer- 
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tain combinations of classical Bessel functions using the results of Hardy and 

Weber mentioned above. In Appendix 4 we discuss Bessel-like distributions and 

give a summation formula for them. 

ACKNOWLEDGEMENT: We thank J. Cogdell, S. Gelbart, H. Jacquet, S. Rallis 

and D. Soudry for their help. We thank R. Bruggeman and the referee for 

carefully reading our original manuscript and pointing out some gaps in our 

original arguments. 

2. No ta t ion  and prel iminaries 

Let G = GL2(R) and S = SL2(R); let G = GL2(R) and S = SL2(R) be the 

double covers of G and S respectively. Let B = BG be the Borel subgroup of 

upper triangular matrices in G and Bs the Borel subgroup of upper triangular 

matrices in S. Let A =- AG be the subgroup of diagonal matrices. Let As be 

the subgroup of diagonal matrices in S. Then As = {s(a) : a E R*} where 

~ta~- (a a l) 
Let 

N { n ( y ) ( t  ~)  } = = : y E R  . 

Let N be the group of lower unipotent elements. Let 

(; 0) (o 1 01) (01 ° 1) (0 ;) e---- 1 ' el ---- , w---- ~ w0 • , 

~/ (a ( c  
Let g = gl2(R) be the Lie algebra of GL2(R). We will denote Lie algebra 

elements using capital letters. Let 

~-- (00 01) ~= (01 00) ~= (1 ° 01) ' ~= (; 0)1 
Fix )~ E R* and let ¢ be a character of N given by 

~b(n(y) ) = ¢~(y) 

where ¢~(y) = e 2 ~ .  We will confuse ~; with ¢~. Let dlx  be the standard 

Lebesgue measure on R and let dx = d~x be a Haar measure on R which is 

self-dual with respect to ¢ = ¢~. Then 

(2.1) dx = d~x = ])~]1/2dlX. 
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We let d*x = d*~x = dx/[x[. For f • L I (R)  we define the A-Fourier transform 

by 

(2.2) 

It is easy to see that  

(2.3) y (y) = iAi-1/2]~(y/A). 

Let dg be a Haar measure on G = GL: (R) .  We normalize dg so that  dg = 
[al-2dxd*cd*ady on the set of elements of the form n(x)z(c)s(a)wn(y). 

Let 7r be an infinite-dimensional irreducible unitary representation of G = 

GL2(R) on a Hilbert space H.  Let H ~  be the subspace of H of smooth vectors 

with the usual topology. Let ¢ = ¢~ be a nontrivial character of N as above. 

It is well known [10] that  there exists a unique up to scalar non-zero continuous 

linear functional L on H ~  satisfying 

(2.4) L(Tr(n)v) = ~(n)L(v), n • N, v •Ho¢. 

We say that  L is a ~ Whittaker functional on H ~ .  Let 

(2.5) Wv (g) = L(rc(g)v), v • H~. 

The following Lemma was communicated to us by David Soudry. 

LEMMA 2.1: Let v E Hc¢, f ,g  • C~(R  *) and assume that  f(a)Wv(t(a)) and 
g(a)Wv(t(a)) are in Ll(R*,d*a). If 

/ f (a)W.(n)v( t (a))d*a= f g(a)W~(n)~(t(a))d* a 

for all n • N, then f(a)Wv(t(a)) = g(a)W~(t(a)) for MI a • R*. 

Proof: / f(a)W~r(n(z))v(t(a))d* a = / f(a)Wv(t(a)n(x))d* a 

= / f(a)W~(t(a))¢(ax)d*a. 

Hence we have that  f(a)W,(n(x))v(t(a)) E L I ( R  *, d'a) for all x E R. Thus, the 

Fourier transform of [al-lf(a)Wv(t(a)) is the same as the Fourier transform of 

]a[-lg(a)Wv(t(a)). It follows that  

] ( a ) W v ( t ( a ) )  = 
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for all a E R*. II 

Let G be a Lie group, g be the Lie algebra of G. Let ¢ E C~(G ) ,  T: C~(G) 
C be a distribution and x, g E G, X E g. We define 

(2.6) 

(2.7) 

(2.s) 

Pr (X) (¢)  (g) = ¢(g2;), Pl (X)(~9)(g) : ¢(X-- 1 g),  

Pr (x)(T)(¢) - T(p~ ( x - l )  (¢)), Pl (x)(T)(¢) - T(pl ( x - ' )  (¢)), 

X(•)(g) = ~(¢(getX))t=o, (X(T))(~b) = T(X(~)). 
a~ 

3. Besse l  a n d  r e l a t i ve  Besse l  d i s t r i b u t i o n s  

In this section we introduce the Bessel and relative Bessel distributions on 

GL2(R).  We write down a formula which relates the two distributions and 

show that  they are given by functions on certain open and dense sets. Our goal 

in the next few sections is to show that  these distributions are given by these 

functions on the full group and to compute these functions explicitly. This will 

force us to consider certain orbital integrals which were considered by Jacquet 

and which arise naturally from our construction. We will introduce them here. 

3.1. NORMALIZED WHITTAKER FUNCTIONAL. Let G = GL2(R) and let 

(Tr, H) be an infinite-dimensional irreducible unitary representation of G with 

trivial central character. Let <, > be a G invariant nonzero inner product  on H.  

Let ¢ = ¢~ be a nonzero character of N and let L be a ¢ Whittaker functional 

on Hoo. (See (2.4).) For v E Hoo we set Wv(g) = L(lr(g)v). By [9] we can (and 

will) normalize L so that  

< Vl,V2 >= f Wvl(t(a))Wv2(t(a))d*a. (3.1) 
J R  

Remark 3.1: In practice we can start  with any nontrivial Whit taker functional 

L and normalize the inner product on H ~  via (3.1). 

3.2.  NORMALIZED TORUS INVARIANT FUNCTIONAL. Let (~r,H) and L be as 

above. It  is well known that  there exists a unique up to scalar nonzero continuous 

linear functional P on H ~  satisfying 

(3.2) P(~r(t(a))v) = P(v),  a E R*, v E Hoo. 

We shall normalize P in the following way. It is well known that  the integral 

/ L(lr(t(a))v)d* a = / Wv(t(a))d* a 
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converges for every v E Hoo. (This follows from the fact that  Wv is rapidly 

decreasing at infinity and of the order ]al r for r > 0 when la[ is small and v is 

a smooth vector in an irreducible unitary representation.) We define 

I f l fw,(t(a))d,a. P(v) = P~(v) - L(~r, 1/2) L(Tr(t(a))v)d* a - L(Tr, 1/2) 

Then P is a nonzero continuous functional on Hoo satisfying (3.2). 

3.3. BESSEL AND RELATIVE BESSEL DISTRIBUTIONS. It follows from Corol- 

lary 23.4 that  for every continuous functional A on Hoo and every f 6 C ~  (G) 

there exists a unique vector vf,~ 6 Hoo such that  

(3.3) ,~(Tr(f)u) = <  u, vf,~ > 

for all u E H. Let (Tr, H),  L and P be as above. We define the normalized 

Bessel distribution by 

(3.4) J~,¢(f) = L(vf,L). 

We define the normalized relative Bessel distribution by 

(3.5) I~,¢(f) = L(vp, f). 

Notice that  J~,¢ = JL,L and I~,¢ = JP, L where J~,Z is defined in (23.5). Let 

](g) = f(g-1) .  It follows from Corollary 23.7 that  I~,~(f) = L(vp, f) -- P(VL,f) 
and that  J~,¢(f) = L(vn,f) = L(VL,]). Hence 

1 /  
I~ '¢(f)  = P(VL']) -- L(7c, 1/2) L(Tc(t(a))vL,])d*a" 

It is easy to check that  7c(h)v~,] = v~,(p~(h)f)~ for every continuous functional A 

on goo and every f 6 C~(G)  and h 6 G. (Here (pt(h)f)(g) = f (h- lg) . )  Hence 

~r(t(a))Vn,] = VL,(p,(t(a))f)~ and we get 

1 f (3.6) I , , ¢ ( f )  J~,¢(pl(t(a) ) f)d*a. 
- LQr, 1/2) ] 

3.4. INVARIANCE OF THE BESSEL AND RELATIVE BESSEL DISTRIBUTIONS. 

For x in G we let p~(x) and pt(x) be as in (2.6) and (2.7). If n 6 N then it 

is easy to see that  V p , , ( n ) ( f ) ,  L : 7r(n)Vf,L and that  Vp,(n)(f),n = ~b(n)Vf,n. It 
follows that  

(p~(n)(J=,~))(/) : Jr,¢(pr(n-1)(/))  : ¢(n)J=,¢(f),  
(3.7) 

(pt(n)(JTr,¢))(f) = J=,v(pl(n-1)(f)) = ¢(n)J=,¢(f).  
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Let a E A. It is easy to see that  Vpl(a)(f),p ---- V f ,p .  Hence we have 

(pr(n)(I~,~))( f )  = I~ ,¢(pr(n-1) ( f ) )  = ¢ (n) I~ ,¢ ( f ) ,  
(3.8) 

(pl(a)(I~,c))( f)  = I~,¢(p~(a-1)(f))  = I~,~(]). 

3.5. BESSEL AND RELATIVE BESSEL FUNCTIONS. Let (Tr, H), J . ,¢  and I~,~p be 

as above. We can associate to J~,¢ and I~,¢ functions j . ,¢  and i~,,  as follows. 

Let N* = N - {e}. Let U1 = N A w o N  and U2 = AN*woN.  

THEOREM 3.2 ([2]): There exists a r e a /  analytic function j~,¢: [/1 --+ C such 

that 

(3.9) J . , ¢ ( f )  = [ .  f (g ) j , , c (g)dg ,  ] E C~(U1). 
J U  1 

Moreover, the Bessel function j~,¢ satisfies 

j~r,¢ (nl gn2 ) ----- if) (tel)~9 (n2)j~r,~ (9) 

for every nl ,  n2 E N and g E U1. 

Remark 3.3: The above theorem is proved in [2] in the generality of quasi- 

split reductive groups using a differential equations approach following Harish- 

Chandra's approach to the character function. We shall not need the above 

theorem in the sequel. We will define j . ,¢  independently of J . ,¢  using a kernel 

formula and then show that  our new j~,¢ satisfies (3.9) for every f E Cc ~ (G). 

Hence we can conclude that  the two definitions of j~,¢ are the same. 

The distribution I~,¢ satisfies the invariance relations (3.8) and is an eigendis- 

tribution for the center of the universal enveloping algebra of G. (See [17], 

p. 184.) We will now show that  such distributions are given by functions when 

restricted to U2. 

Let [] = 1/2H 2 + 1/2C 2 + X Y  + Y X  = 1 /2H 2 + H + 1/2C 2 + 2 Y X  be the 

Casimir element in the universal enveloping algebra of g. (See Section 2 for the 

definition of these elements.) Since [] is in the center of the enveloping algebra 

of 9, it follows that  there exists a scalar c~ E C such that  

[ ] G , ,  = 

THEOREM 3.4: Let I be a distribution on G satisfying: 

(1) p (a)I = I ,a  A. 
(2) p (n)I = , ( n ) I ,  n e N .  
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(3) DI = a I  for some a E C. 

Then there exists a real analytic function i: U2 ~ C such that 

I ( f )  = f_  f(g)i(g)dg, f E C~(U2). 
JU 2 

Moreover, the function i satisfies 

(3.10) i(agn) = ¢(n)i(g) 

for e v e r y a  E A, n E N and g E U2. If  we set y(x) = i(n(x)w),  x ~ O, and 

¢(n(x))  = e 2~i~x then y satisfies the differentia1 equation 

(3.11) x2y '' + (2x + 27riA)y' - ay = O. 

Proof: We restrict I to the open set U2 = AN*woN.  The mapping 

(a, nl ,  n2) ~ anlwon2 

is a submersion from A x N* × N to U2. It follows that there exists an onto 

mapping from Cc~(A × N* × N)  to Cc~(U2) which we now describe. Let/~ E 

C~(A) ,  7 E C ~ ( N * )  and ~ E C ~ ( N ) .  We define fz,~,~ E C~(U2)  by 

fz,~,~(anlwn2) =/~(a)T(nl)d(n2). 

We set 7(x) = 7(n(x)). The following properties of this mapping are easy to 

verify: 

Ad(n2)(H)f~,-r,~ = f-H~,7,~ + fZ,2xX-y,~, 

(3.12) Ad(n2)(C)f~,~,~ = fc~,-r,~, 

Ad(n2)(YX)fz,7,, = fz,xT,x~. 

Since Ad(n2)(K]) = [3, it follows from (3.12) that  

D f a,B ,~r,6 = f l /2H2 ~ ,.r,~ 

+ f-H~,2~x~,~ 

+ f~,2xXxX-r,~ 

(3.13) + f-HB,'y,~ 

Jr f~,2xX~/,~ 

+ fl/2C~Z,~,~ 

+ f~,2x'r ,x~.  
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By the invariance assumptions (1) and (2) on I, there exists a distribution YI 
on N* such that 

( 3 . 1 4 )  = fA f 
for every ~, % 6 as above. It follows from (3), from (3.13) and from (3.14) that 

Yl satisfies 

(3.15) Y i ( ( 2 x X x X  + 2 x X  - 4,i,~X)-y) = aYi(~),  ,~ • C~ ( N* ) .  

We define the differential operator D by 

(3.16) D = 2 x X x X + 2 x X - 4 7 r i ) ~ X - c ~ =  2 x 2 ~ +  4x d - 47ri,~d~ - a .  

We identify N* with R*. By (3.15) we have YI(D~) = 0 for all "), • Cc~(R*). 

Since D is an elliptic differential operator it follows that there exists an analytic 

function y(x), x # 0 such that 

(3.17) Yz(7) = frt* 7(x)y(x)dx 

and such that y(x) is a solution for the differential equation Dry = 0 where 

(3.18) D t = 2 X x X x  - 2Xx+4rri)~-c~= 2X2d-~ + 4 x d +  47riA d c~. 

Let da be the standard Haar measure on A. For f e Cc~(U2) define 

(3.19) Of (x) = / ](an(x)wn(y))¢~ (y)dady. 

Then it follows from (3.14) and (3.17) that 

(3.20) I ( f )  = Yi(O:) = / R  O:(x)y(x)dx" 

Let dg = dadxdy be a Haar measure on G restricted to/-:2, the set of elements 

of the form an(x)wn(y) for a • A, x, y • R, x ¢ 0. We define the function i on 

[:2 by 
i(an(x)wn(y) ) = y(x)¢:~ (y). 

Then it follows from (3.20) that for every f • C~(U2) we have 

z(/) = .f f ( an( x )wn(y ) )i ( an( x )wn(y ) )dadydx 

= f ( g ) i ( g ) d g  

= / f(g)i(g)dg. | 
JG 
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For every distribution I satisfying conditions (1), (2) and (3) of Theorem 3.4 

we let i l  be the function on U2 which determines I on Us. I f / =  I~,¢ is a relative 

Bessel distribution attached to a unitary representation 7r as above, then we set 

i~r,~ = i l~ ,~ .  

COROLLARY 3.5: Let I be a distribution on G satisfying (1), (2) and (3) of 

Theorem 3.4. Let y(x) = i i (n(x)w) .  Let v be defined by the equation - ~  = 

1/4 - v 2. Then there exist constants Cl, c2, c3, c4 such that 

(3.20) y(x)  = cl Ixl-1/2e~'~/~J,(~rl.~l/x) + c21x t -1 /2g '~ / zJ - , (~} .~] / z )  

when x > 0 and 

- 1 / 2  i,,~ 
( 3 . 2 1 )  y(x) - -  c 3 [ / I  e ~ &(TrlAI/Ixl) + c4lxt-1/2e~X/xJ_~(~rlA}/]x]) 

when x < O. 

Proof." We need to solve the differential equation (3.11). Let v(x) = y(x-1) .  

Then v satisfies the differential equation 

(3.22) v, l _ 2rri)~vt a O. - xTV = 

It is easy to check that  the functions Vl(X) = I x]l/2ei'~xJ~ (TrlAx]) and v2 (x) = 

Ixll/2eirXxJ_~(l)~xl) are independent solutions for (3.22) when v is not an integer 

and that  Ixll/2eirXxJ,(lAxl) and Ixll/2ei'~xxY~(l)~xl)are independent solutions 

when v is an integer. | 

We can use the asymptotics of the classical Bessel functions d~ and Y, (see 

[14], 5.11) to get: 

COROLLARY 3.6: Let I be a distribution as above and i i  be the function that 

gives I on U2. There exists a positive constant E such that ]Q(n(X)Wo)l < E 

for sma/1 x. 

We will want to prove a full regularity theorem for J~,~ and I~,~0. That  is, 

we will later prove that  J~,¢ and I~,¢ are given by j~,¢ and i~,~0, respectively, 

on the full group and not only on U1 and U2. We know of two methods of doing 

that.  The first is to prove a general regularity result for distributions satisfying 

the conditions of Theorem 3.4. We shall do that  in the next two sections. We 

could also prove a general regularity result for distributions on G satisfying the 

invariance conditions of Jr,¢. Instead we will use the classification of irreducible 

unitary representations and a kernel formula that  will give a different definition 
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of j~,¢ and show using this kernel formula that the distribution is given by a 
function on the full group. The advantage of the second approach is that we 
also get an explicit formula for j~,¢. Using this explicit formula for j . ,¢  we will 

compute i~,~. 

3.6. ORBITAL INTEGRALS. In our discussion of the distributions J,,~ and 
I. ,¢, certain orbital integrals appeared naturally. It is worthwhile to define 

them again. Let ] E C~(U2). By Theorem 3.2 there exists a function j~,¢ such 
that  

J~'¢(f) = .I~ f(g)j~,¢(g)dg 

= . f  f (nl z s (b)wn2)j~r,¢ (nl zs (b)wn2)dnl dzdn2 [b[ ~ 2 d* b 

. /  f(nl zs(b)won2 )j, ,¢ (nl zs(b)won2)dnl dzdn2[b[ - 2 d $  + b 

: f.j ,,¢(s(b)w)(ff(nlzs(b)wn=)¢(nl)¢(n=)dnldzdn2)Ibl-2d'b 
-F/Ft.Jr,¢ (8(b)wo)(f f (nlZ8(b)won2)¢(~1 )~(n2 )dnldzdn2)]b 1-2d*b. 

Hence it is natural to define the (N, N) orbital integral 

(3.23) ,.~N,N Z I ", f Uf,¢' [g) : f(nlzgn2)¢(nl)¢(n2)dnldzdn2. 
.IN xNxZ 

The distribution l~,~ gives rise (see (3.20)) to the (A, N) orbital integral 

(3.24) ,.~A,N , \ f ~Jf,¢ [9)= f(agwonl)~b(nl)dadnl. 
JA xN 

These orbital integrals were studied by Jacquet. In particular, it is proved in [11] 
that the integral in (3.23) converges absolutely for every f E Cc~(G) and every 
g E U2 and that the integral in (3.24) converges absolutely for every f E C~(G) 

A,N and 9 E U2. Let Of(x) = Of,¢ (n(x)wo). Then for f E C~(U2) we have (see 
(3.20)) 

(3.25) I~,¢ (f) = UR Of (x)i~,¢ (n(x)wo)dx 

and 

(3.26) 
i.,¢((r-] - a , ) f )  = / R  D(Of )(x)i~'¢(n(x)w°)dx 

= / R  OI(x)(Dty)(x)dx = O. 
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Here y(x) = i~,¢(n(x)wo) and we are using the fact that 

(3.27) O(D_~.)f(x) = D(Of)(x). 

Here the differential operator D is defined in (3.16) and the above equation 

follows from the proof of Theorem 3.4 or from a direct calculation. Moreover, 

it is also easy to see that (3.27) is true for all f E Cc~(G) and not just for 

f E Cc~(U2). We shall need this fact later in the sequel. 

4. Orbital  integrals 

In this section we study the orbital integrals which were defined in (3.23) and 

(3.24). We are interested in bounds and explicit asymptotic expansions for these 

integrals. While it is possible to obtain explicit asymptotic expansions for both 

integrals, we will only need these expansions for the orbital integrals in (3.24). 

We start with some easy bounds for the orbital integrals in (3.23). 

4.1. (N,N) ORBITAL INTEGRALS. Define 

J (a, c, :) = f f[n(x)z(c)s(a)won(y)]dxdy, 

c, f)  = / f[n(x)z(c)s(a)wn(y)]dxdy. J2(a, 

Notice that the integrals take place on two disjoint open sets whose union is the 

open cell. These two sets come from the two connected components of G. 

PROPOSITION 4.1: Let f E Cc~(G). Then 

(a) Ji(a, c, f)  converges absolutely for every a, c E R*. 

(b) Ji(a,c,f)  as a function of c is compactly supported in R* independent 
ofa. 

(c) Ji(a,c,f)  = 0 when la] is small (independent of c). 
(d) [Ji(a,c,f)[ = O([al 1+~) for every e > 0 when [a[ is large, independent 

ofc. 

Proof'. We shall prove everything for J1. The proof for J2 is the same. We first 

prove (b). f is compactly supported in G, hence the support of f is in a set of 

G on which the determinant is bounded. Since I det(n(x)z(c)s(a)won(y)l = Icl 2 
we immediately get (b). Now, to prove (a), write 

+ a c )  
n ( x l z ( c ) s ( a l w o n ( y )  = a . 

a 
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Since c and a are fixed and nonzero, and since f is compactly supported on the 

(1, 1) entry and on the (2, 2) entry, it follows that the integration takes place 

on a bounded set in (x, y). Hence we have (a). By the above argument the 

integrand is identically zero for small values of c, hence by looking at the (2, 1) 

entry of the above matrix we see that  the integrand vanishes for small values of 

a. Hence we have proved (c). Now we extend f to R 4 by setting it to be zero 

outside of G. We make a change of variables xca -1 ~ x and yca -1 -~ y. We 

have 

Jl(a,c,f) = [a/c[2// (~ ~ ; a c )  dxdy. 

Since f is bounded, we can bound the above integral by a constant times the 

area of a region of the form {x,y : Ix] _< D1, ]y[ _< D2, ]xya + ac2[ <_ D3} for 

some constants D1,D2,D3. It is easy to see that  this area is of the order of 

[a[- '  log(la[), hence we get our result. | 

COROLLARY 4.2: Let f • C~(G) and let 

f 
01 (a, f)  = / [f[n(x)z(c)s(a)won(y)]ldxdyd* c, 

(4.1) d 
f 

02 (a, f )  = J [f[n(x)z(c)s(a)wn(y)][dxdyd* c. 

Then Oi(a,f) = 0 for [a] small and Oi(a,f) = O(]a] 1+~) for [a] large, i = 1,2 

and e > O. 

Proof: There exists a positive function ] • C~(G) such that ] >_ [][. Applying 

Proposition 4.1 parts (b), (c) and (d) to O~(a,]) gives the result. | 

y)N,N,Z Taking absolute values inside the integral defining ._.f,~ we get: 

COROLLARY 4.3: IO~,'~ N'Z (s(a)w)I = 0 when lal is smart and 10;'¢ N'z (s(a)w)[ = 
O([a[l+e). Similarly for N,N,Z ]0~,~ (s(a)wo)[. 

4.2. (A,N)  ORBITAL INTEGRALS. Define 

MI(X, c, f) = / f[s(a)z(c)n(x)won(y)]d* ady, 

M2(x, e, f )  -- / f[s(a)z(c)n(x)wn(y)]d* ady. 
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PROPOSITION 4.4: Fix f e C~(G).  Then 
(a) Mi(x,c, f)  converges absolutely for every x ~ 0. 

(b) Mi(x, c, f )  = 0 for small and large values of [c[ independent of x. 
(c) Mi(x, c, f )  = 0 for large values of Ix[ independent ofc. 

(d) [Mi(x,c,f)[ = O([x[ ~) for every e > 0 when Ix[ is small (independent of 
c). The implied constant is also independent of c (but depends on e). 

Proof: We shall prove the proposition for M1. The proof is the same for M2. 

We have 
s(a)z(c)n(x)won(y) = ( acx ac(l + yx) ) c c.q.y_ • 

a a 

Since the determinant of the above matrix is - c  2, it follows that the function 

vanishes for small and large values of Icl independent of the other variables. 

Hence we have proved (b). Since the (2, 1) entry is ~, it follows that  the function 

vanishes for small values of lat. Since the (1, 1) entry is cax and x is nonzero 

and fixed, we have that  the function vanishes for large values of lal (depending 

on x). Finally, looking at the (2, 2) entry we get that the function vanishes 

for large values of lYl, hence the integral takes place over a compact set and is 

absolutely convergent. This proves (a). 

For (c) we again look at the (1, 1) entry. Since the function vanishes for small 

values of Icl and small values of lal, it follows that the function vanishes for 

small values of Ix I independent of the other variables, hence we get (c). 

For (d) we write 

/ j : ( a c x  ac(l + y X ) ) d . a d y  M1 (X, C, f)  -=- c cy 
a a 

= Ic[ -1 lair c c , d*ady 
Y 

~ Y 

Now we can argue using volume considerations as in the proof of Proposition 4.1. 
| 

(4.2) 

We define 

1~1 (x, f )  -= f f[s(a)z(c)n(x)won(y)]d* adyd* c, 

-~/2(x, f )  = / f[s(a)z(c)n(x)wn(y)]d* adyd* c. 
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COROLLARY 4.5: (a) /~/i(x, f )  = 0 when Ixl is large. 

(b) JM (x,/)I = O(Ixl for every e > 0 when Ixl is small. 

4.3. i IS LOCALLY INTEGRABLE. 

PROPOSITION 4.6: Let I be a distribution satisfying the conditions of 
Theorem 3.4 and let i = ii be the function that gives I on the set U2. Then i 
is locally integrable on G. 

Proof: We need to show that  

a l i (9) l f (g)dg < 

for all positive ] e C ~  (G). We can replace G in the above integration with the 

set BwoB - AwoN and restrict the Haar measure dg to this set. We have that  

BwoB - AwoN is a disjoint union of the open sets AsZNwoN - AsZwoN and 

AsZNwN - AsZwN. (See Section 2 for the definition of As.) Hence, up to a 

normalization of the Haar measure dg we can assume that  dg = d*ad*cdxdy on 

elements of the form s(a)z(c)n(x)won(y) and similarly on elements of the form 

s(a)z(c)n(x)wn(y). Hence 

/G 'i(g)lf(g)ldg = /AsZwog li(9)lf(g)ldg + /AsZwg IJ(g)lf(g)ldg 

= /li(s(a)z(c)w°n(Y))]f(s(a)z(c)n(x)w°n(y))d*adyd*cdx 

÷/li(s(a)z(c)n(x)wn(y))lf(s(a)z(c)n(x)wn(y))d* adyd* cdx 

= /li(n(x)w°)12~ll(x'f)dx + /li(n(x)w)li~12(x'f)dx" 

Here M1 and/17/2 are defined in (4.2). By Corollary 4.5 we have that  the inte- 

grands vanish when Ix] is large. When Ix] is small it follows from Corollary 4.5 

and Corollary 3.6 the integrands are of the order of Ixl ~ for every e > 0, hence 

we get that  both integrals are finite. | 

It follows from the above corollary that  the function i which comes from the 

distribution I gives a distribution Ti on the full group given by 

(4.3) T~(f) = / c  i(g)f(g)dg. 

From Theorem 3.4 we get that  I -- Ti on the set U2. We would like to show 

that  the two distributions, I and Ti, are the same on all of G, that  is I = Ti. 
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To do that we need to show that the distribution I -T i  satisfies conditions (1), 

(2) and (3) of Theorem 3.4. While (1) and (2) are obvious, we will need some 

more information to prove (3) for the distribution Ti. In particular, we will need 
explicit information about the asymptotics of the (A, N) orbital integrals. 

4.4. EXPLICIT ASYMPTOTICS OF (A,N) ORBITAL INTEGRALS. We shall 

replace the (A, N) orbital integral with an integral on a different space. Let 

0 1). 
We can identify the space .4 \ G with the space 

X = {g-lTg: g • G} = {x • G:  x 2 = 1,det(x) = -1}. 

X is a closed submanifold in G and the map Ag ~, g-lrg is a diffeomorphism. 

In particular, every smooth function ] on A \ G can be identified with a smooth 

function ¢]  on X by 

(4.4) ¢](g-17"g) = ](g). 

Let f ¢ C~  (G) and let ] be a function on A \ G defined by 

(4.5) ](g) =/A f(ag)da 

where da is a fixed Haar measure on A. Then ] is smooth and compactly 
supported on A \ G, hence ¢] is smooth and compactly supported on X. 

Let ¢(n(x)) = e 2"ix. We can write 

A N  fA Of,~ (n(x)wo)= f(an(x)wonl)¢(nl)dadnl 
×N 

= IN ](n(x)wonl)~b(nl)dadnl 

= / ¢](nl -lw0n(-x)Tn(x)w0nl )~(nl )dadnl. 

Since X is closed in G, it follows that the function 0] is a restriction of a function 
¢ E Cc ~ (G) to X. In matrix form we can write the last integral as 

/R ( 2 x y + l  2(xy2+y))e2~Ydy" 
(4.6) G¢(x) = ¢ -2x -2xy - 1 



20 E.M. BARUCH AND Z. MAO Isr. J. Math. 

Remark 4.7: We have chosen the character ¢ to be ~b(n(x)) = e 2'~i~. Similar 

arguments will work for the general case ¢(n(x))  = e 2~i~x, but we prefer to 

simplify the notation by choosing A = 1. 

A,N It follows from the above discussion that the asymptotics of OL¢ (n(x)wo) 

are the same as of G¢(x) for the appropriate f and ¢. Since -2x  appears in the 

(2, 1) entry and since ¢ is compactly supported on G, it follows that G¢(x) = 0 

when ]x] is large. Hence it is enough to consider the case when Ix[ is small. We 

will assume that x > 0. The case x < 0 can be treated similarly. We let ~ = x -1 

and we study the asymptotics of F¢(8) = G¢(x) = G¢(8 -1) when 8 --+ c~. We 

have 

(4.7) 

R [ 2 8 - 1 Y + 1  2(8-1y2+y) '~ 
F ¢ ( 8 )  ~-- ¢ ~ - 2 8  -1 --28--1y -- 1 ] e2~ZYdY 

= S f R  ¢ [ 2 y + l  28(y 2 + y )  
\ - 2 ~  -1 - 2 y  - 1 ) e2~iZYdY 

= 8 f~ ¢~'~ ( 2 y + l .  -28 -1 -2yZ) e2'~i~e4~i~(y2+~)dydz'- l 

Here ¢1,2 is the Fourier transform of ¢ in the (1, 2) component, that is, 

.,(a :):/0(a :)....... 
and we have used the Fourier inversion formula to get the last equation. For 

the first step we have used the change of variables y ~ 8Y. 

PROPOSITION 4.8: Let F~(8) be the Junction defined above and let al be any 

smooth function on (0, c~) such that a vanishes around 0 and such that a(x) = 1 

for large x. Let 
1 oo 1 ;)....x 

For 8 > 0 we write 

F¢(9) = c(¢)e-2"~al(Z)  + a~(8) 

where a2 is a smooth function on (0, oo) which depends on ¢ and al .  Then a2 

vanishes around 0 and 

a2(8) : O(1),a~(8) = O(3 -1) 

a t  (x). 

Proof: The (2, 1) entry of the matrix in the integral (4.7) is -2~  -1. When 
8 --+ c~ this entry goes to zero. By using a Taylor series for ¢1,2 at the (2, 1) 
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variable we can see that the main term of the asymptotics of F¢ (/~) comes from 

the integral 

~ ' ~ ( ~ ) = f R ¢ I ' 2 ( 2 y ;  1 --2yZ ) 1 

Now we use the stationary phase method (see [19]) to obtain the asymptotics 

of the above integral. The phase function is 

Z(y, z) = 2 (y + 2z(  2 + 

and it has two critical points: ( -1 /2 ,  0) and (1/2 , -1) .  It is easy to check that 

the Hessian at these points in nonzero, hence/~ is a Morse function. Now it 

follows from ([19], Theorem 2.9) that F¢(/~) has an asymptotic expansion at 

infinity of the form 

(4.8) F¢(/~) = e2~iZ(cl + c2~ -1 + Ca~3 -~ +. . . )  + dl + d2/~ -1 + da/~ -2 + . " .  

Here Cl = c(¢) as defined above. Notice that this infinite sum does not converge. 

We use here the convention of ([19], 2.2). 

The next terms in the Taylor expansion will give an integral which will have 

the same form as (4.8) but with smaller terms. Hence F¢ (/~) will also have an 

asymptotic expansion of the form (4.8) with Cl = c(¢). By taking the derivatives 

of F¢(/3) in the integral (4.7), it is easy to see that all derivatives of F,(/3) have 

asymptotic expansions of the type (4.8) and that they can be obtained by taking 

the derivative of the asymptotic expansion for F¢ (/~). Notice that for our result 

we only need the first derivative, the first term of the asymptotic expansion and 

the first term and the remainder in the Taylor expansion. | 

Remark 4.9: Notice that the function ¢1,2 is not compactly supported in the 

(1, 2) entry. However, it is a Schwartz function in that variable and in all 

variables. To overcome this we look at the integral (4.7) when Izl is large. We 

make the change of variables u = z and v = y + 2z(y 2 + y). It is easy to see 

that this transformation is nonsingular when lzl is large and that the resulting 

integral gives a rapidly decreasing function in/~. Hence, by splitting our integral 

using a partition of unity into the two sets where Izl is large and the complement, 

we get one integral that gives a rapidly decreasing function in/~ and another 

which involves a compactly supported function in the variables y and z, hence 

the expansion (4.8) is still valid. 

Recall that G¢(x) = F¢(x -1) is defined in (4.6). 
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COROLLARY 4.10: Let al  be any smooth function on (0, oc) such that a van- 

ishes around oc and such that a(x)  -- 1 in a neighborhood of  O. Write 

Go(x)  = +  2(x) 

where a2 is a smooth function on (0, oo) which depends on ¢ and al .  Then a2 

vanishes around oc and for small x we have 

a2(x) = O(1),a~(x) = O ( x - 1 ) .  

If~b = ~b] as defined in (4.4) and (4.5), where f E C ~ ( G )  and ] E Cc~(A\G) ,  

then it is easy to see that  

(4.9) c(¢]) = f f ( a n ) ¢ ( n ) d n  = Q( f ) .  
3A ×N 

COROLLARY 4.11: Let f E Cc~(G). Let al  be any smooth function on (O, oc) 

such that a vanishes around oc and such that a(x)  = 1 in a neighborhood of 0. 

For x > 0, write 

A,N Of,¢ (n(x)wo) = Q(f)e27ri/za1(x) + a2(x) 

where a2 is a smooth function on (0, oc) which depends on ¢ and al .  Then a2 

vanishes around oo and 

a2(x) = O(1),a~(x) = O(x-1) .  

Similarly for x < 0 we get 

PROPOSITION 4.12: Let f E Cc~(G). Let al be any smooth function on 

( -c~,  0) such that a vanishes around - c o  and such that  a(x)  = 1 in a neigh- 

borhood of  O. For x < 0, write 

A N  Of ,~  (n(X)Wo)  ~-- Q ( f ) e  -2wi/xO~l (x)  -~- ol 2 (x )  

where a2 is a smooth function on ( -oc ,  O) which depends on ¢ and Ol 1 . Then 

a2 vanishes around - o o  and 

a2(x) = O(1),a~(x) -- O(x-1) .  
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5. Regu la r i ty  of  the  relat ive Bessel  d i s t r ibu t ions  

In this section we will show that the relative Bessel distributions I~,¢ (see (3.5)) 

are given by the relative Bessel functions on the full group. At this point, after 

the results of Section 4, we are given two distributions, I and Ti, which agree on 

an open set. We would like to show that they are equal everywhere. The first 

distribution satisfies a differential equation coming from the Casimir element. 

We need to obtain some information about the action of the Casimir operator 

on the second distribution. This is the content of our first Theorem. 

Let I be a distribution satisfying conditions (1), (2) and (3) of Theorem 3.4 

and let i be the function which gives I on the set U2. Let y(x) = i(n(x)wo). 
Then y is given by (3.20) and (3.21) and i is given on U2 by (3.10). By the 

proof of Proposition 4.6 it follows that any function i which is defined on U2 as 

above is locally integrable and gives a distribution Ti on G defined by (4.3). 

THEOREM 5.1: Let i be a function on U2 defined as above. That is, y(x) = 
i(n(x)wo) is defined by (3.20) and (3.21) for some constants cl, c2, c3, c4 and i 

is extended to U2 by (3.10). Let Ti be the distribution defined by (4.3). Then 
there exists/~ E C such that 

( [ ]  - ~)T~ = ~ Q  

where Q is a distribution coming from the Borel subgroup B and Q is given by 
(4.9). 

Proof: We will assume that ¢(n(x)) = e 2~x. Hence A = 1 in (3.11) and (3.20), 

(3.21). The general case, ¢(n(x)) = e 2~i~x, is similar. By (3.25) we have that 

Ti( f )= /G f(g)i(g)dg= /R Of(x)i(n(x)wo)dx= /R O/(x)y(x)dx 

and by (3.27) 

([3 - a)T~(f) = / r t  D(Oy)(x)y(x)dx. 
.e* 

Notice that the function y(x) satisfies the differential equation Dr(y) = 0 for x # 

0. We divide the above integral into two parts: from 0 to c~ and from -c~  to 0. 

For each part we apply integration by parts. To compute the integration by parts 

we use the expression for O/(x) given by Corollary 4.11 and by Proposition 4.12. 

We also need to use the asymptotic expansions for the classical Bessel functions 

(see, for example, [14], 5.11). | 
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PROPOSITION 5.2: Let T be a distribution on G satisfying: 

(1) pr(n)I  = ¢(n)I ,  n E N. 

(2) There exists a E C such that  ([] - a )T  = Q, where Q is a distribution 

which is defined on B (and extended to G). 

(3) T is supported on G - U2, that is T is supported on the disjoint union of 

B and woB. 

Then T = O. 

Proof: The proof is similar to the proof of Proposition 2.10 in [17]. We shall 

assume that  ¢(n(x))  = e 2~i~. The general case is similar. Let X be as in 

Section 2. Then it follows from (1) that  

X ( T )  = 2uiT 

where we identify X with the left invariant differential operator defined in (2.8). 

We write [] = 2 Y X  + 1/2H 2 + H + 1/2C 2, hence (2) gives 

(5.1) 47riY(T) = ( - 1 / 2 H  2 -  H -  1/2C 2 + a ) T  + Q. 

Let L be the one-dimensional Lie algebra spanned by Y which we view as a 

Lie algebra of left invariant vector fields. Let B be the Borel subgroup. Then 

L is transversal to B in the sense of ([17], (2.2) and (2.3)). Here we can take 

M to be G or to be G - woB. We restrict our distribution T to the open set 

M = G - woB. Then T on M is supported on B. Let b E B. By ([17], Lemma 

2.4), there exists a neighborhood of b such that  

(5.2) T = YJT  

on this neighborhood and Tj are distributions defined on B. Here the sum is 

finite, starts with j = 0 and the Tj are unique. We apply equation (5.1) to the 

above formula. Then we have 

8 7 r i E Y J + 1 T  j = Z ( - H  2 -  2 H - C  2 + 2a)YJTj + 2Q. 

We now rewrite the left and the right side into expressions of the form 

Z YJQJ 

for distributions Qj defined on B. If T # 0, then we get different expressions 

for the left hand side and the right hand side since the order of the highest 

nonzero term will be bigger in the left hand side. This can be seen directly by 
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commuting Y with the H and C, or by Lemma 2.5 in [17]. It follows from the 

uniqueness that  T = 0 in a neighborhood of b, hence T = 0 on M and T is 

supported on woB. We also get from (2) that  Q = 0. 

We now set M = G and L as before is spanned by Y. We claim that  L is 

transversal to woB in the sense of ([17], (2.2) and (2.3)). By left invariance it 

is enough to show that  for all p E woB, L is transversal to p - l w o B  at e. If 

p = wob then p - l w o B  = b - l B  = B, hence the claim is clear. Now the proof 

proceeds exactly as above. T satisfies (5.1) with Q = 0. In a neighborhood o fp  

we can write T as in (5.2) where Ti are distributions defined on woB. Now, the 

same arguments will show that  Ti = 0 for all i, hence T = 0 in a neighborhood 

of p, hence T = 0 everywhere. | 

Our main theorem of the last three sections is the following. 

THEOREM 5.3: Let I be a distribution on G satisfying conditions (1), (2) and 

(3) of Theorem 3.4. That is, assume 

(1) pl(a)I = I , a  E A. 

(2) pr(n)I  = ~b(n)I, n e N. 

(3) [:]I = a I  for some a e C. 

Then there exists a real analytic function i on U2 which is locally integrable on 

G such that 
g h  

I(f) = J 
for every f e Cc ~ (G). 

Proo~ By Theorem 3.4 there exists a function i(g) such that  the above equality 

is true on U2, that  is, for f E Cc°°(U2). By Proposition 4.6, i is locally integrable. 

Let Ti be the distribution given by i. (See (4.3).) Let T = Ti - I.  Then T is 

supported on G - U2 and, by (3) and by Theorem 5.1, 

([:3 - a )T  = Q 

where Q is a distribution defined on B. (Notice that  we are replacing the 

distribution ~Q in Theorem 5.1 with Q.) It follows from Proposition 5.2 that  

T = 0, that  is I = Ti, which is the required conclusion. | 

Remark 5.4: We have also proved that  Q = 0, that  is, ~ = 0 in Theorem 5.1. 

This will give a condition on the scalars cl, c2, c3, c4 that  appear in the formulas 

for i(g). We will not need these conditions in the sequel. 
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Remark 5.5: It is possible to prove a regularity result for the Bessel dis- 

tributions in the same way, that  is, let J be a distribution on G satisfying 

pt(n)J = p~(n)J = ¢ ( n ) J  for every n • N and pr(Z)J = X(z)J for some quasi- 

character ~( on Z and every z • Z. Assume also that  there exists a • C such 

that  [:]J = a J .  Then we can prove that  there exists a real analytic function j 

on BwoB which is locally integrable on G such that  

J(f) = f j(g)f(g)dg 

for every f • C ~  (G). We shall proceed in a different way and prove a weaker 

result which is sufficient for our purpose. Starting from a unitary representation 

7r of G with a trivial central character, we shall use the results of Cogdell and 

Piatetski-Shapiro to give j r ,¢  as a kernel function for the action of w0 in the 

Kirillov model. After that  we will use this Kernel formula to show that  this 

function is one and the same as the Bessel function coming from the Bessel 

distribution ,/.,¢ and that  it gives the distribution on the full group. 

6. Bessel functions for GL2(R) 

In this section we recall the formula in [5] for the action of the Weyl element in 

the Kirillov or Whittaker model of an irreducible unitary representation with 

trivial central character of GL2 (R). This action will be given by a kernel formula 

involving a classical Bessel function. We include the proof of this kernel formula 

in Appendix 2 in order to make this discussion self-contained. We mention that  

our method of computation and the proof of this kernel formula is different than 

the computation and proof mentioned in [5] which was communicated to us by 

Jim Cogdell. We thank Jim Cogdell for explaining to us this result. Our method 

of proof is similar to the method indicated in ([20], chapter VII, section 7). We 

introduce a convergence factor that  does not appear in [20] in order to allow 

a change of order of integration. After finishing our original manuscript, we 

learned of a different approach for the proof using a Mellin transform which was 

obtained around the same time by Motohashi [15] in the case of the principal 

series. 

We shall employ the same proof and computation for the double cover of 

GL2 (R) to get a new kernel formula in the Kirillov model of unitary genuine 

representations. 

Let 7r be an irreducible admissible representation of G = GL~(R) on a Hilbert 

space H with trivial central character. Let ¢ = Cx be the character of N defined 

in Section 2. Let dx and d*x be the measures defined in (2.1). 
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Fix a nonzero ~p Whittaker functional (see (2.4)) L on H ~ .  For v e H ~  we 

set W~(g) = n(~r(g)v). 

THEOREM 6.1 ([5] (see also Appendix 2)): Fix 7c and L as above. There exists 

a function jl: R* -+ C such that 

(6.1) Wv (t(y)wo) = / R ,  j l  (yx)Wv (t(x))d*x 

for a11 v E H~  such that Wv(t(x)) has a high order of vanishing at a = 0. 

Remark 6.2: The above integral converges absolutely. The exact order of van- 

ishing that is needed will depend on ~r and will be given explicitly in the proof. 

When 7r is a unitary principal series or a unitary complementary series, we will 

show that every v E Hoo satisfies the required condition, hence the formula is 

valid for every v E Ho~. For the discrete series we will show that all the K 

finite vectors satisfy the condition. We believe that the formula is valid for all 

v E H ~  in the discrete series. 

Notice that j l  is denoted by k~,n,s in Appendix 2. 

We extend j l  to BwoB by 

j~,¢ (n(r)z(c)t(a)won(s) ) = ¢(n(r) )¢(n(s) )jl (a). 

The following formula is an easy consequence of (6.1) (see [1] for an argument). 

THEOREM 6.3: Assume v E H ~  is as above. Then 

(6.2) Wv (g) = / R *  j~'¢ (gt(a-1))W" (t(a))d*a 

for all g E BwoB. 

We shall now give the formulas in [5] for j~,¢(t(x)wo). We note that  the 

formulas in ([5], p. 57) are for j~,¢(t(x)w), hence their values for x will be our 

values for - x .  Let #(x) = ]x]S(sgn(x)) ~ with Re(s) > 0 be a quasi-character of 

R*. We denote by ~r(#, p - l )  the representation of G induced by the character 

(# ,# -1)  from B if it is irreducible. (We use normalized induction.) If it is 

not irreducible then ~r(p, #-1)  will denote its unique irreducible subspace. The 

representation 7c(#, #-1)  is denoted by 7r~,~ in Appendix 2. 

THEOREM 6.4 ([5]): Let ¢ = ¢~ as defined in Section 2. 
(i) If  p(x) = Ix[ d-1/2 sgn(x) with d E N, then ~r = 7r(p,]~ -1) is a holomorphic 

discrete series representation and we have 

{ (-1)d21~ll/2.lx11/2J2d_l(4~L~lV~) if x < O; 
j ~ , ~ ( t ( x ) w o )  = 0 i f  x > O. 
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(ii) I f#(x)  = ]xlir(sgn(x)) ~ with r e R and ~/E {0, 1}, then ~r = 7r(~t,~t -~) is a 

principal series representation and we have 

{ 4(-1)'l,t11121xl ~12 cos(~rir)K2~,-(4~l,t lv '~) ir x > 0; 

j,~,c(t(x)wo) = IAI1/21xl'/2 ~(J2~r(4~rlAIx/~l) - Y-2~(4~rlAIx/~))  
i f x  < O. 

(iii) I f# (x )=  Ixlr(sgn(x)) ' w i t h O  < r < 1/2 a n d s / e  {0, 1}, then 7r = 7r(#,# -1) 

is a complementary series representation and we have 

{ 4(-1)'lAl'/21xl~/2cos(Trr)K2,.(4~rlAIv/~) if x > 0; 
j~ , , ( t (x )~o )  = A ~/~ • ~/~ -'~ ( J ~ ( 4 ~ I A I v ' ~ )  - J -=~(4~ lAIv '~ ) )  sin(Trr) 

i f x  < O. 

Since the central character of r is trivial and since 

1)( 
we have 

j~r,¢(s(a)wo) = j~,¢(t(a2)wo), j,~,~(s(a)w) = j~,~p(t(-a2)wo). 

Using the theory of classical Bessel functions [14] we get: 

LEMMA 6.5: Let ~r be a unitary irreducible representation of G with trivial 
central character. Then 

j,,,(s(a)wo) = O(]a] 1/2) and j,~,,(s(a)w) = O(lal 1/2) 

when ]a] is large. 

PROPOSITION 6 .6 :  jTr =- j :r ,¢ is  lOCally integrable on G. 

Proof: We need to show that  

G Ij~(g)f(g)ldg < c~ 

for all f e C~(G). We can replace G in the above integration with the set 

BwoB and restrict the Haar measure dg to this set. We have that  BwoB is a 

disjoint union of the open sets NZAswoN and N Z A s w N .  Hence we have 

/G [jr(g)f(g)ldg = /NZAswoN IJ'~(g)f(g)ldg + /NZAswN 'j~(g)f(g)'dg. 
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gZAswog [j~(g)f(g)[dg 

= f IJ, (n(x)z(c)s(a)won(y))f(n(x)z(c)s(a)won(y))l lal-2dxdy d*c 

and similarly for the second summand, we get that 

IJ~r (g) f (g)Idg = / [J~ ( s (a)wo )lO~ (a, f) tlal- 2 d*a 

+ f IJ~(s(a)w)lO2(a' f)llal-2d*a. 

Here O1 and 02 are defined in (4.1). By Corollary 4.2 we have that the inte- 

grands vanish when lal is small. It follows from Corollary 4.2 and Lemma 6.5 

that the integrands are of order la1-1/2+~ when lal is large. Hence it is clear 

that both integrals are finite. | 

7. Bessel  d i s t r ibu t ions  for GL2(R) 

In this section we show that the Bessel distributions on GL2(R) (or to be 

precise, the Bessel distributions attached to irreducible unitary representation 

of GL2(R) with trivial central character) are given by the Bessel functions 

defined in Section 6. The proof here is similar to the one given in [1] for the 
p-adic case. 

Let G -- GL2(R) and let (7r, H) be an infinite-dimensional irreducible unitary 

representation of G with trivial central character. Let L be a ~ Whittaker 
functional on H~.  

For j: E C~(G) we let vf, i E Hoo be the unique vector that satisfies 

L(77(f)u) = <  u, vf,L > 

for all u E H. Here <, > is the inner product defined in (3.1). (See Remark 3.1.) 

As in (3.4) we define the normalized Bessel distribution by 

J,,¢(f) = L(VLL ). 

LEMMA 7.1: Let u E H~. Then 

fR. a = fG f(g)Wu(g)dg. 
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Proof'. 

E. M. BARUCH AND Z. MAO 

It is easy to see that Vp~(~(a))f,L = 7r(t(a))(Vf,L). Hence 

J,,c(pr(t(a))f) = Wv±,L (t(a)). 

Thus, by (3.1), 

fR J~,~(pr(t(a))f)Wu(t(a))d* a = <  u, vf,L >. 

Isr. J. Math. 

By definition 

< u, vf,L > =  L(Tr(J:)u)= fc f(g)L(r(g)u)dg= f6 f(g)W~(g)dg. | 

Define a distribution j~,¢ on C ~  (G) by 

J"¢(f) =/6 f(g)j,,¢(g)dg. 

LEMMA 7.2: Let u E Hoo and f C Cc~(G). Assume that Wu(t(a)) has a high 

order of vanishing at a = 0 (say W~(t(a)) = O([a12)). Then 

f J,,¢(pr(t(a))f)Wu(t(a))d*a---/6 f(g)Wu(g)dg. 

Proof'. 

/ J~,~ (pr(t(a))f)Wu (t(a))d*a =fR* W~ (t(a))(/BwoBf (g(t(a)))j~,~ (g)dg)d*a 

=~R Wu( t(a) ) (/BwoBf (g)J~,¢(gt(a-1) )dg) d* a 

=/BwoBf (g) (/R J~,c(gt(a-1) ) W~(t(a) )d* a) dg 

=IBwoBf(g)Wu(g)dg" 

Here we have obtained the last equality from (6.2). To justify the change of 

order above consider the integral 

I jBwoB f (g)J~,¢(gt(a-1) )dg 

~-- j If (nt zt(b)w°n2)llJ~,¢ (nl zt(b)w°n2t(a-1) )ldnldzdn21bl-2db 

= /]J',¢(t(b)t(a-1)w°)l(/]f(nlzt(b)w°n2)ldnldzdn2) 'b]-2db" 
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By Corollary 4.2, the inner integral vanishes for small ]b[ and is of the order 

]hi 1/2+e when Ib] is large. By Theorem 6.4, jr,¢(t(c)wo) = O(]c] 1/4) when Ic] is 

large and j,~,¢(t(c)wo) = O(1) when Icl is small, hence it follows that  the integral 

gives a function of a which has an order of ]a] 1/2 at  OO and ]a] -1/4 at a = 0. 

Since Wu(t(a)) is rapidly decreasing at co and has a large order of vanishing at 

a = 0, the integral converges absolutely and we can change the order. I 

COROLLARY 7.3: 
P 

= ]a f(g)j~,¢(g)dg. &,,(f) 

Proof: By Lemma 7.1 and Lemma 7.2 we have that  if u E Ho~ and W~(t(a)) 
has a high order of vanishing at a = 0, then 

for all f E Cc~(G). If u E H ~  is such that  Wu(t(a)) has a high order of 

vanishing at a = 0, then ~r(n)u has the same property for every n E N, hence 

we can replace u with 7r(n)u in the above equality. It follows from Lemma 2.1 

that  J~,¢(pr(t(a))f)W~(t(a)) = ],,~(pr(t(a))f)Wu(t(a)) for all a E R*. It is 

well known (see, for example, [9]) that  there exists u E Hoo such that  W~,(t(a)) 
has a high order of vanishing at a = 0 and such that  W(e) = W(t(1)) = 1. 

Hence J~,¢(f) = J~,~(f).  | 

Remark 7.4: A similar proof works for general irreducible admissible represen- 

tations of GL2 (R). Since such a representation is not always unitary, we need 

to replace the invariant inner product in the definition of the Bessel distribution 

with the invariant pairing between the representation and its dual. For more 

details see [1]. 

8. R e l a t i v e  B e s s e l  f u n c t i o n s  o n  GL2(R) 

In this section we compute the relative Bessel function of the infinite-dimensional 

irreducible unitary representations of G with trivial central character. In the 

heart of this section and of this paper is a computation of the Fourier transform 

of the Bessel functions obtained in Section 7. This computation is based on a 

Fourier transform of certain Bessel functions obtained by Hardy and Weber [6]. 

We carry out this computation in Appendix 3. 

Let ~r be an infinite-dimensional irreducible unitary representation of G with 

trivial central character. Let I~,~ and J. ,~ be the normalized Bessel and relative 



32 E.M. BARUCH AND Z. MAO Isr. J. Math. 

Bessel distributions as defined in (3.4) and (3.5). By (3.6) we have 

1 / J~ ¢(pl(t(b))f)d*b. (8.1) I " ¢ ( f )  - n(~r, 1/2) ' 

In particular, since J~,¢ is given by j . ,¢  on U2 = BwoB - AwoN and I. ,¢ is 

given by i.,~ on U2, we have that 

(8.2) L(~:1/2) /R* ( /u2 f(t(b)g)J~'¢(g)dg) d-b=/u2 f(g)i~,~(g)dg 

for all f E C~(U2). We shall use (8.2) to find a more explicit relation between 

i~,¢ and j~,¢ and consequently compute i~,¢. 

LEMMA 8.1: Let f: U2 ~ C be de~ned by 

(8.3) f(t(a)n(x)z(c)won(y)) = ¢1 (a)¢2 (x)¢3 (c)¢4 (y) 

where ¢1,¢2,¢3 E Cc~(R *) and ¢4 E C~(R) .  Then 

• ^ * a  : /¢i(b)d*b/¢3(c)d*e/¢4(y,~/J(y)dy/3~r,~(t(a)wo,¢2(a)d 
where 0;2 is the A-Fourier transform of ¢2 as defined in (2.2). 

Proof: We let dg = d*adxd*cdy be a Haar measure on the set of elements of 

the form g = t(a)n(x)z(e)won(y). Then 

(8.4) /.*/G f(t(b)g)j~,¢(g)dgd*b 

]" ¢1 (ba)¢2 (x)¢3 (c)¢4 (y)j,,¢ (t(a)n(x)z(c)won(y))d*adxd*cdv 

:/¢3(c)d*c/¢4(y)~/J(y)dy( f ¢2(x)~/J(ax)dx / ~)1 (ba)j,-r,¢(t(a)wo)d*a)d*b 

= f ¢4(Y)¢(y)dy f ¢l(ba)j'rc,¢(t(a)w°)~2(a)d*ad*b" 
We claim that  the last integral converges absolutely. Hence we change the order 

of integration to get 

f Cx(ba)j.,¢(t(a)wo)¢2(a)d*ad*b = / ¢l(ba)j.,¢(t(a)wo)¢2(a)d*bd*a 

(8.5) ---- / ¢1 (b)j,,¢ (a)d* bd* a 
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To show that the integral converges absolutely we notice that  j,,¢(t(a)wo) is of 

order [al 1/4 when la I is large and at most of order lal 1/4 when la I is small. We 

can find positive constants A, B such that ¢i _< cTA,B, where c is a positive 

constant and TA,B is a characteristic function of the set {x : A _ Ix] < B}. 

Hence 

/ l¢l(ba)j . ,¢(t(a)wo)¢2(a)ld*a <_ c' fiB~hi lal-3141¢2(a)l da. 
JIAlbl 

Since ¢2 (a) is rapidly decreasing when lat is large, it follows that the value of the 

integral is rapidly decreasing when Ibl is small. When Ibl is large the integral is 

of the order of [b1-1/4. It is now clear that integrating further with d*b = [bI-ldb 
will converge absolutely both at 0 and co. | 

LEMMA 8.2: Let f: U2 --+ C be given by (8.3). Then 

a f(g)i,,¢(g)dg 

-- s +,,,,.,I +.(c,.l o.( l .o,o.(x,,x. 
Proof." Integrating as in the proof of Lemma 8.1 and using the invariance 

properties of 7~,¢, the proof is obvious. I 

PROPOSITION 8.3: G,¢(n(x)WO) is the A-Fourier transform of the function 
lal-ljr,¢ (t(a)wo). 

Proof: It follows from (8.2), Lemma 8.1 and Lemma 8.2 that  

1 

for all ¢2 E Cc~(R*). After writing d*a = laI-lda the proposition follows from 

standard Fourier analysis. | 

Using Proposition 8.3, Theorem 6.4 and formulas (25), (28) on p. 54 and (27), 

(30) on p. 110 of [6], we can now compute i , ,¢  for every irreducible unitary 

representation ~ = ~(#, #-1)  of G. For the detailed computations see Appendix 

3. We give here the final results: 

COROLLARY 8.4: Let ~r = r (# ,#  -1) and ¢ = Cx. 
(i) If p(x) = Ixld- n sgn(x) with d E N, then 7r is a discrete series represen- 

tation and we have 

1 . . . . .  a v~IAl:r x.i/y . . . . . . . . .  
iw,q)(rt(y)wo) - -  5(71.1-1/2)(sgn(y)$) ~y--~¢ Jd_l/2(Tr}AI/ly[). 
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(ii) I f# (x )  = [xl~(sgn(x) ~ with r E R and r / •  {0, 1}, then 

1 I~1~ • ~ e r X i / Y e s g n ( A y )  (lri/4) 
ir,¢ (n(y )wo ) = L( u , 1/2) sin(Trir)X/2[y] 

X [( ( - -1) '+1e  sgn()~y)(-'r/2) +sgn(~y)ie~g"(~u)('~/2)Ji~(Tr]A]/]y]) 

+ ((-1)%~s~(~u)('~/2) -sgn(Ay)ie~g"(xu)(-'~/2))J_i~(~]AI/lyt)  ] . 

(iii) I f# (x )  = I/Ir(sgn(x) v with 0 < r < 1/2 and V • {0,1}, then 

i~,¢(n(y)wo) L(r ,  1/2) sin(rr) 2x/~ er~i/yesgn(~y)(ri/a) 

× [((-1)n+l eSg'(x~)(~'i/2) +sgn($y)ie~S"(~)(-'~i/2)J~(r[)~]/]y]) 

+ ((-1)neSgn(~Y)(-~ri/2) -sgn($y)ieSgn(~Y)(rri/2))J_r(r]$]/]y]) ] . 

9. GL(2) d o u b l e  cover ,  notation and pre l imina r i e s  

In the next part of this paper we will prove a regularity theorem for Bessel 

distributions on the double cover of GL(2) and SL(2). The method of proof is 

similar to the proof of the regularity theorem for Bessel distributions on GL(2) 

which was employed in Section 7. In that  proof we used a kernel formula and 

an inner product formula in the Kirillov model. Since such formulas are not 

known for the double cover case, we will need to obtain them before we can 

prove the regularity theorem. We start in this section with some notation and 

preliminaries on double covers. 

For a, b E R* we denote by (a, b) the Hilbert symbol, which is defined by 

f - 1  i f a < 0 a n d b < 0 ,  (a, b) 
L 1 otherwise. 

Let 

and set 
c i f c #  0; 

)~(g)= d if c = 0 .  

For gl,g2 E G = GL2(R) we define the cocycle a(gl ,g2) to be 

 (glg2) ( (g192)  (glg2)); = (det(gl), j 

see ([12], p. 41). We let G be the metaplectic cover of G, i.e., 

= {[g,~] : g E G,e  = +1} 
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with multiplication given by 

[gl, £1][g2, ([2] : IdlY2, a ( g l ,  g2)£1£2)] • 

The group G fits into the exact sequence 

(9.1) I -~ {+1} -~ 0 ~ G -+ 1. 

In general, if H is any subgroup of G we let H denote its full inverse image in 

G. In particular, if (9.1) splits over H, t h e n / t  is the direct product of {+1} 

with H. We note in particular that (9.1) splits over N. 

We let S = SL2(R) and S be the metaplectic cover of S viewed as a subgroup 

of G. We shall identify an element g E G and e = 4-1 with 

(9.2) g = [ g ,  1]EG, e = [ e ,  e iEG.  

We let N, A and B be subgroups of G as defined in Section 2. Let Z be the 

center of G. The group 2 is Abelian but not central in G. Let z(c) = diag(c, c). 

The commutation is given by 

(9.3) gz(c) = z(c)g(det(g), c) 

where z(c) is identified with [z(c), 1] in 2, g = [g, 1] is in G and (x, y) is the 

Hilbert symbol of x, y E R*. 

Let k be the group of elements of the form 

[ ( c o s ( a )  sin(a) ~ e] 
- s in (a )  c o s ( a ) / '  " 

We can identify the group R/47rZ with t7[ via a map r: R -+/~ such that 

0 -1  ' " 

10. Genuine  represen ta t ions  of SL2(R) 

We recall some results of [7] on the classification of genuine irreducible unitary 

representations of S. 

Let a be an irreducible unitary representation of S on a Fr6chet space 9 v. We 

say that a is genuine if 

a(e )v=ev ,  f o r e = 4 - 1 a n d a l l v E 5  v. 

As in [21] we will consider the family an,s of induced representations: 
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De~nition 10.1: Let y E {0, 1} and s E C. Let a~,s be the representation of :~ 

on the space of smooth functions f :  S --+ C satisfying 

(10.1) f(en(x)s(a)h) = eT(a)(sgn(a)) nlal ~+1 f(h) 

where x E R, a E R*, e = + l ,  h E S and 

1 i f a  > O; 
? ( a ) =  i if a < 0 .  

We denote by U~,,., the space of an,a , that is, the space of functions satisfying 

(10.1). 

Notice that  S acts on 9rz,7., by right translations via the formula 

(a,7,~(hl)f)(h) = f(hhl).  

The Lie algebra Lie(S) = s = sI2 acts on an,s by left invariant differential 

operators via the formula 

d (f(hetD))[t=o, D E 8. (10.2) (Df)(h) = -~ 

We let ~;(q, s) be the space of functions V/, f E an,~ defined by 

Vf(x) = f(wn(x)).  

Since the mapping f ~ Vf is injective, the space );(~, s) admits an S and 
action which is isomorphic to an,s. In particular, we will need the following 

actions on V E 12(~/, s): 

(10.3) (wV)(x) = 7(x)(sign(x)) ~+1 Ix i - s - lV( -x -Z) ,  
d 

(10.4) ( x y ) ( x )  = 

where X is defined in Section 2. It follows from (10.3) that 

(10.5) V(x) = O(Ixl -~-1) 

for Ixl large and V E ~;(~, s). By (10.4) the derivative of V is also in );(~, s), 

hence inductively we have 

(10.6) 

for Ixl 

(10.7) 

dn 
dx n (V(x)) = O(Ixl - s - l )  

large and V E );07, s). We define the Fourier transform of V by 

~(y) = ?z (y) = / V(x)e-2~iY~dx, 
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where dx is now the standard Lebesgue measure on R. By (10.5) this integral 

converges absolutely when Re(s) > 0. Since V(x) and all its derivatives are in 

L 1 (R), it follows from standard Fourier analysis that: 

LEMMA 10.2: Let s E C and assume that Re(s) > 0. Let V E V(~h s). Then 

V (y) is a continuous, bounded and rapidly decreasing function on R.  Moreover, 

V(x) f V e2~iYXd (lO.S) = y. 

Finally, we shall consider another model for a,,~, which we denote by ~)(~, s) 

consisting of functions V, V E V(y, s). When Re(so) = 0 and ¢ E V(~, so) we 

define ¢ using analytic continuation as follows: We choose a section Vs E V(ff, s) 

as in [16] such that Vso = ¢. This is done by fixing ~ and taking a section 

fs E Va,.~ such that fs restricted t o / ~  is a smooth function independent of s. 

In other words, a section fs is such that there exists a smooth function p on 

R / 4 r Z  such that fs(r(O)) = p(O) (see (9.4) for the definition of r(0)). 

At this point, 1)~ is defined for Re(s) > 0 by (10.7). By [16], l)~(y) is analytic 

in s and has analytic continuation to C. (We will give another proof below.) 

It is clear from (10.5) and from (10.6) that if Re(s) > 0, then ~7 is bounded 

and rapidly decreasing at c~. We would like to get some uniform bounds in s 

for the Fourier transform of a section Vs: 

THEOREM 10.3: Let fs E :F~.., be a section and let Vs = V L . Let s be in 

a compact set Q in the region 0 _< Re(s) < 1/4. Then there exists a positive 
constant C (independent ors E O and y) such that 

]9 (y)l < Clyl s • Q. 

Also, for every integer n > 0 there exists a constant Cn > 0 independent of 

s E Q such that 

IY (y)l < cnlyl  e rt, s e Q. 

Proof: Since f~ is a section, we can write 

fs(s(a)n(y)r(O)) = 7(a)(sgn(a))VlalS+lp(O) 

where p is a smooth function as above. By [21] p. 23 we have 

Wn(X) = 8((1 + X2)-l/2))r~(--x)r(Ox), 

where Ox E (0, u) is determined by the equalities 

sin(Oz) = (1 + x2) -U2' cos(O~) = -x(1 + x2) -1/2. 
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It follows that 

Vs(x) = (1 + 

and that Vs(x) << (1 +x2) -ne(s)/2-U2. It is easy to see that the derivatives of 

Vs(x) in the x variable satisfy the same bound. Using a Taylor expansion for p, 

we can write Vs(x) = p(~)(1 + x2) -s/2-1/2 + Ms(x) where Ms(x) is a smooth 

function of x and the nth derivative of Ms(x) satisfies 

M~n)(x) <<n x- l (1  + X2)-ne(s)/2-1/2,n >_ O. 

It follows that the Fourier transform of Ms is bounded uniformly in s when s is 

in a compact set in the region Re(s) > - 1 / 2  and that it is rapidly decreasing 

uniformly in s. Hence, the Fourier transform of Ms(x) satisfies the requirements 

of the Lemma. It now remains to bound the Fourier transform of Ps(x) = 
(1 + x:) -s/2-U2. By ([6], 1.3 (7)) we have that 

Ps(y) = 2x/- (Tryy/2r(s/2 + 1/2)Ks/2(27rlYl). 

Since 0 _< Re(s) _< 1/4 we have that 0 < Re(s/2) _< 1/8. Hence, by Lemma 20.2 

we have that for s E Q, 

IPs(y)l <<Q lYlRe(s/2)lYl- /Se-  lYl. 
It follows that if y is small then IPs(u)l <<Q {Y1-1Is, and that when y is large, 

[/Ss(y)[ is rapidly decreasing uniformly in s E Q. | 

It is easy to describe the action of s(a) and n(x) on ~)(~, s). One of our main 

goals is to describe the action of w on l)(y, s) which we will do in the next 

section. It is possible to do that for all the representations considered above 

or their irreducible subspaces. However, we are only interested in the unitary 

representations of S. We now describe the genuine unitary dual of S following 

[7] and [21]. 

10.1. PRINCIPAL SERIES. For s = ir, r E R,  the representation av,ir is 

irreducible and unitary. These representations are called the principal series. 

10.2. COMPLEMENTARY SERIES. For s E R, 0 < s < 1/2, the representation 

av,s is irreducible and unitary. These representations are called the complemen- 

tary series. 

10.3. DISCRETE SERIES. Let s • - 1 / 2  + N and v = ½(-1) v. We distinguish 

two cases: 
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CASE 1: S E - u  + 2Z. Then an,s has an irreducible unitary subspace. These 

representations are called the holomorphic discrete series. 

CASE 2: s E p + 2Z. Then an,s has an irreducible unitary subspace. These 

representations are called the anti-holomorphic discrete series. 

1 the representation an,s has an 10.4. WEIL REPRESENTATIONS. For s = - ~ ,  

+ Weil representation (see [22] p. 223). We irreducible subspace which is an re 

ignore these representations completely in this paper. 

Notation: For s as in the principal series, the complementary series or the 

discrete series, we denote by av,s, and ])(~, s) the unique irreducible subrepre- 

sentation and subspace respectively of a~,s and ~;(~, s). 

THEOREM 10.4 ([7], [21]): Every genuine irreducible unitary representation of 

is isomorphic to a unique principal series or a complementary series or a 

discrete series or a Well representation. That is, if a is a genuine irreducible 

+ then there exist unique unitary representation ors  which is not isomorphic to r ~ 

s and ~ as above such that a ~ ~,s .  

11. A kerne l  f o r m u l a  for  the action of  w 

In this section we describe the action of the Weyl element w in the model Ps,~ 

when s is a complementary series parameter, a principal series parameter or a 

discrete series parameter. As in Section 10 we shall fix for the moment A = 1, 

~" : ~1 (see (2.2)) and dx = dxl to be the standard Lebesgue measure on R. 

Our aim is to find an explicit formula of the following nature: 

(11.1) w~/(b) = (wV)A(b) = f ks,n(a, b)V(a)da 

where V E V(r/, s) (or ])(s, 7) in the discrete series case) and l ? is defined by 

(10.7) when Re(s) > 0 and by analytic continuation for Re(s) = 0. In the case 

of the discrete series we will only prove the result for vectors whose Whittaker 

function satisfies a certain growth condition. We will show that  all K finite 

vectors satisfy this growth condition. We believe that  the growth condition is 

satisfied by every smooth vector in a discrete series representation. 

To establish the formula we let V E Pn,s. Then for Re(s) > 0 we have 

(11.2) wV(b) = (wV)A(b) =/7(x)(sgn(x))n+llxl-s- lV(-x-1)e-2'~ibXdx.  
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It follows from Lemma 10.2 that when Re(s) > 0 and V E ))(~, s), we can write 

V(c) = f ~(a)e2~iaCda. 

Combining this with (11.2) we get: 

LEMMA 11.1: Let s be such that Re(s) > 0. Let V E l;(~,s). Then 

w(/(b) = (wY)^(b) 

(11.3) = f  (x)(sgn(x)),+llxl_S_le_2 ibx(f ~(a)e_2~iaX_ida)dx" 

We would like to change the order of integration in the above equation. To 
do that we introduce a convergence factor as follows. If V E LI(R), it follows 
from the dominated convergence theorem that 

l/(b) = lim fV(x)e-2~ibXe-5(l~l+lzl-~)dx. (11.4) 
5-40+ J 

Hence, under the assumptions of Lemma 11.1 we have 

(11.5) wV(b) = 

li~a+ f 9(a)  da)d . 
Since 12 E LI(R), the iterated integral is absolutely convergent and we can 
interchange the order of integration to get: 

LEMMA 11.2: Let s be such that Re(s) > 0. Let V E 1)v,s. Then 

 9(b) = 

(11.6) 

where 

(11.7) 

] i~  f l / ( a ) ( f  ~/(x)(sgn(x))'7+llxl-S-%2'~i(-ax-~-bx)-5(M+lxK1)dx)da. 

We write this equation in the form 

w(Z(b) = 5-4o+1im / ?(a)ks,,,5(a, b)da 

b) = / "y(x)(sgn(x)) ~+1 [al-S-le 2~i(-ax-~-bz)-5(Ixl+lxK1)dx. ks,ms(a, 

We shall now compute ks,ms(a, b) and prove that we can interchange the limit 
and integration in (11.6) to get the formula that was promised in (11.1). 
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11.1. A BRANCH OF THE LOG. We remove the ray ( -oo ,0 ]  from C. 

z E C \ ( -o0 ,  0] we write z = re i° with -~r < 0 < 7r and r > 0. We let 

Log(z) = Log(r) + i0, z ~ = e s Log(z). 

In particular, 

(11.8) 

41 

For 

where 

~0 °° 
k+,7,~(a, b) = ?(x)(sgn(x))  v+l }xl-S-l e2"i(-~x-l-bx)-~(Ixl+lxl-') dx 

= fO °° x-S-le(-2~ria-5)x-l+(-2~rib-5)Xdx 

= K(S, J + 27ria, 5 + 21rib) 

zl/2 = rU2eiO/2. 

11.2. COMPUTATION OF ks,n,,(a,y). The following formula is an easy conse- 

quence of a formula in [24] p. 182: 

LEMMA 11.3: Let  al,a2 E C be such that Re(al)  > 0 and Re(a2) > 0. Then 

K(s,  al, a2) = x-S- le -a l /x -a2Xdx 

(11.9) 
-~2 Z~s(Zal a2 ) 

where Ks is the dazsicat K Bessel function and the square root, and power is 

taken as in (11.1). 

LEMMA 11.4: Assume that s is in a compact set Q in C. Then 

al--Re(s) . . . .  1/2 1/2, 
IK(s,al,a,)l ~ s ( / a l  a2 ) .  

Proof: This follows from the fact that  ]zVl = IzlRe(v)e -arg(z)Im(~). Since 

] arg(z)] < 7r and Im(v) is bounded, we get that  ]zVl < <  ]z] l~e(~). | 

We separate the integral in (11.7) into two parts: 

ks,~,~(a,b) + b) (a,b) = k~,~,~(a, + k~,,,~ 
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f k[,,n,~(a, b) = 7(x)(sgn(x))n+11xl-S-le27ri(-ax-~-bx)-'5(Ixl+lxl-~)dx 
oo 

O - s - l  e(-2~ria+5)x-t +(-2~ib+5)X dx  = i ( -1 ) '+ l tx t  

= i(-1)~ +1 x-S-te(27ria-6)x-l+(2~rib-5)Xdx 

= i ( -1)V+lK(s ,5  - 2~ia,5 - 27rib) 

LEMMA 11.5: Fix s with 0 < Re(s) and fix b ~ O. Assume that 5 < 1. Then 

for [a[ small 

(11.1o) < <  lal 

and for ]a f large 

(11.11) Iks,v,~(a, b)l < <  la1-1/4, 

where the implied constants are independent of 5 < 1. 

Proof: By Lemma 20.2 we have that  [K~(z)l < <  Izl -ne(~). Hence, using 

Lemma 11.4 we get that  

]ks,v,~(a,b)] < <  15 + 21rial -Re(s) + ]5-  2Trial -Re(s) << 127~ial -Re(s). 

To get the second bound we notice that  by Corollary 20.4 and Lemma 11.4, 

]ks,v,~(a, b)I < <  15 + 2~ria]-Re(s)-l/415 + 27ribl Re(s)-1~4 

when lal is large. When Re(s) < 1/4 we have that  

15 + 27db[ ae(s)-U4 ~_ 121ribl ae(s)-l/4 = O(1). 

When Re(s) > 1/4 and 5 < 1 then 

15 + 2uibl Re(s)-1~4 ~_ I1 + 27eibl Re(s)-1~4 = O(1). 

When la] is large and 5 < 1 then 15 + 2uia[ = O(lal) and we get the result. 
| 

We will now apply dominated convergence in (11.6) to get the desired kernel 

formula. 
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11.3. COMPLEMENTARY SERIES. We fix s with 0 < Re(s) < 1 and we fix 

b ~ 0. We assume that 0 < 5 < 1. By (11.10), we have that ]k~,,7,~(a,b)] 
<< la] -ae(s). By Lemma 10.2, V(a) = O(1). It follows that we can use 

the dominated convergence theorem in (11.6) at 0. By (11.10), we have that 

Ik~,v,~(a,b)[ << la1-1/4 when ]a[ is large. By Lemma 10.2, V(a) is rapidly 

decreasing at oc. It follows that we can use the dominated convergence theorem 

in (11.6) at c~ to conclude that 

wl~(b) = / V(a)( l~m+ k~,~,~(a,b))da = / V(a)k~,~(a,b)da (11.12) 

where 

k~,~(a,b) = lim ks,,7,~(a,b ). 
6--~0+ 

Then for 0 < Re(s) < 1 we have 

(11.13) k~,v(a, b) = K(s, 27ria, 27rib) + i(-1) '+l  K(s, 27ria, 27rib) 

a -s/2 . i(_l)n+l a -s/20~a, Sb_12Ks(i~r[abll/25La,b ) = -b ")':~-~2Ks(47c]ab[1/2z'/a'b) + b 

where 

i if a > 0 and b < 0; ( i  if a > 0 and b > 0; 
(11.14) %,b = --i i f a < 0 a n d b > 0 ;  ;Ya,b = l --i i f a < 0 a n d b < 0 ;  

1 otherwise; 1 otherwise; 

and 

- i  i f a > 0 a n d b < 0 ;  ( - i  i f a > 0 a n d b > 0 ;  
(11.15) aa,b= i i f a < 0 a n d b > 0 ;  Oa,b-- / i  i f a < 0 a n d b < 0 ;  

1 otherwise; 1 otherwise. 

LEMMA 11.6: Fix b ~ O. Let s be in a compact set Q in the region 0 < Re(s) 
_< 1/4. Then 

(11.16) lks,,(a, b)] <<Q ]al - '/4. 

Proof." It follows from the above formulas for ks,n(a, b) and from Lemma 20.2 

that 
Iks,v(a, b)l <<Q lal- Re(s)/2-1/8. 

Hence, when la[ is small we get our result. From Lemma 20.1 we have that 

Iks,n(a, b)] <<Q ]a[ -Re(s)/2-l/2.  

Hence, we get our result for large [a[. I 
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11.4. PRINCIPAL SERIES. Assume that  0 < Re(s) < 1 and let Vs E Vn,s be a 

section. By (11.12) we have that  

= (wV)2(b) = f ks,,(a, w (fls ( b ) b)(Zs(a)da 

where ks,v(a, b) is given by (11.13). We would like to extend this formula to So 

with Re(s0) = 0. To do that  we note that  for fixed b, the left hand side of the 

above equation is an analytic function in s. Hence we have 

(11.17) wVso(b) = lim f ks,n(a, b) Vs(a)da 
8~" 80 J 

where the limit is taken on a compact path to So coming from the right. We 

shall now use the dominated convergence to bring the limit inside the integral. 

By Theorem 10.3 we have that  ]IYs(a)] = O(]a] -1/8) when s is in a compact set 

in the region 0 _< Re(s) _< 1/4. By (11.16) we have for such s that  Iks,n(a,b)l = 
O(]aI-1/4). Hence we can use the dominated convergence theorem at a = 0 in 

(11.17). 

By Theorem 10.3 we have that  lYs (a) is rapidly decreasing at c~ uniformly for 

s in a compact region as above. By (11.16) we have for such s that  Iks,~(a, b)l = 
O(Iai-1/a). Hence we can use the dominated convergence theorem at a = co in 

(11.17). 
We conclude that  (11.1) holds for s = it, r E R with ks,~(a,b) given by 

(11.13). 

11.5. DISCRETE SERIES. Our starting point is (11.12), which is valid for 

Re(s) > 0 and, in particular, for s E - 1 / 2  + N. We fix such s. We will further 

assume that  V E ])(~, s) (see Notation 10.4). In order to apply the dominated 

convergence theorem we will need the following lemma: 

LEMMA 11.7: Let s E - 1 / 2  + N and V E V(zhS) be a K-iinite vector. Then 

II?(a)l = O(lalq when lal > 0 is small. 

Proof: Assume first that  s E - u  + 2Z, that  is, the holomorphic discrete series 

case. Then V(a) = 0 if a < 0 and the Lemma is true for such a. Let a > 0. We 

have that  

(11.18) tZ (a) = a(S-1)/2Wv(s(v~) ) 

where Wv is the Whittaker function associated to V. By [21] Lemme 12, it 

follows that  if V is the lowest weight in the holomorphic discrete series then 

(11.19) Wv (s(a)) = O(a s+l) 
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when a > 0 is small. By applying the differential operator X repeatedly to the 

lowest weight vector, it is easy to see that  all K-finite vectors satisfy (11.19). 

Now the lemma follows from (11.18). 

Anti-holomorphic discrete series: If s E v + 2Z, then V(a) = 0 if a > 0 and, 

f o r a  < 0, 

? (a) -- lal(8-1)/2Wv(s( ) 

for some Whittaker function Wv. Using the formulas in [21] Lemme 12 for the 

maximal weight and applying the same arguments as before, we again reach the 

same conclusion. I 

We are now ready to apply the dominated convergence theorem. Let s E 

- v  + 2Z and V be as in the Lemma above. Since V(a) = 0 for a < 0 we only 

need to worry about  the positive integration. When a is large, V(a) is rapidly 

decreasing and ks,v,~(a, b) is bounded independent of 5. Let V be such that 

l /(a) = O(la[ s) when [a I is small (this includes all the K-finite vectors by the 

above lemma). Since ks,v,~(a, b) = O([a[ -s) independent of 5 < 1, we can apply 

the dominated convergence theorem to (11.12) to get 

wV(b) = / V(a)( l~m+ ks,~,~(a, b))da. 

We again let ks,v(a, b) = lim~_~o+ ks,v,~(a, b) and get that  ks,v(a, b) is given by 

(11.13). A similar argument for the anti-holomorphic discrete series will yield 

the same formulas. 

We now compute ks,v (a, b) explicitly for the holomorphic discrete series and 

the anti-holomorphic discrete series. 

1 11.6. HOLOMORPHIC DISCRETE SERIES. Assume that s E - 5  + N and s E 
- v + 2 Z .  Here v = =t=~1 and ~ E {0, 1} is determined by the equation v = ½(-1) 7. 

It follows that ( -1 )  7 = ( -1 )  s+1/2. If V E ~)(~, s), then V(a) = 0 for a < 0 and 

wV(b) = O f o r b <  0. Hence we can choose ks,v(a, b) = 0 f o r a <  0 o r b <  0. 

Now assume a > 0 and b > 0. Then 

k,,s(a, b) =2(a/b)-S/2Ks(47riv~) + (-1)s+3/2iKs(-41riv/--~) 

- 

i sin(rs) 
• s ~ i / 2  

+ 2(a/b)_S/2(_1)s+3/2 i (Trz/2)e ( - e - ~ i J s ( 4 7 r v ' ~ )  + g_~(47rv~)).  
i sin(Trs) 

1 Since s E ~ + N we have that e -sTril2 -eS~i/2(-1)s+3/2i. Hence the 
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coefficient of J - s  above vanishes and we have 

ki,s(a,b) = (a/b) -s/2 . rr (_eS~i/2 + (_l)S+l/2ie_S~i/2)js(41rv/-~) 
(11.20) sm 7rs 

= 2(a/b)_S/2 7r e_3~is/2Js(47rx/~)" 
sin 7rs 

1 11.7. ANTI-HOLOMORPHIC DISCRETE SERIES. Assume that  s E - 3  + N 

1 and E {0, 1} is determined by the equation a n d s  E v + 2 N .  H e r e v =  4-~ r/ 

v = ½(-1)  7. It follows that  ( - 1 )  7 = ( -1 )  s-1/2. If Y E l)(~/,s) then l)(a) = 0 

for a > 0 and wf/(b) = 0 for b > 0. Hence we can choose ks,7(a, b) = 0 for a > 0 

or b > 0. Now assume a < 0 and b < 0. Then 

ks,7(a, b) =2(la/bi)-s/2(Ks(-47riv/-~) + (-1)s+U2iKs(47rix/~) 

=2(Rib) -8/2 (~ri l2)eS~i/2 ( -e - s~ i  J~(47rx/~) + Y_~(4rx/~))  
i sin(its) 

+ 21albl-~12(-1)~+~12i (-:'r-il2)e-8'~12 (e~"~£(4~v/'h-b) - J _ s ( 4 r ~ ) ) .  
i sin(rrs) 

1 Since s E - ~  + N we have that  e s~i/2 = -e-S ' i /2( -1)s+l /2 i .  Hence the 

coefficient of J-s  above vanishes and we have 

ks,,(a,b) = lalbl -~12 ~ ( -e  -~"~12 + (-1)~-ll2ie~"'12)as(4~x/labl) 
sin r s  

(11.21) =21albl -~1~ ~ e3"~/~ g~ ( 4~r IV/~-~). 
sin 7rs 

We now summarize our results in this section. 

1 THEOREM 11.8: Let s be such that 0 <_ Re(s) < 1 or such that s E - ~  + N. 
1 Let ~ E {0,1}. Let V E V(~,s) ,  and if s E - ~  + N we further assume that 

y e ~(~,  s) and that Q(a) = O(lal~). Then 

wl/(b) = (wV)A(b) = i ks,v(a, b)lZ(a)da (11.22) 

where k~,,(a, b) is given by (11.13). Moreover, if gri,s is a holomorphic discrete 

series, then we can choose ks,7(a, b) = 0 for a < 0 or b < 0 and ks,7(a, b) is given 

by (11.20) for a > 0 and b > O. I f  S~,~ is an anti-holomorphic discrete series, 

then we can choose ks,7(a, b) = 0 for a > 0 or b > 0 and ks,7(a, b) is given by 

(11.21) for a < 0 and b < O. 

We end this section by a simple generalization of (11.22) which we will need 

later. Let A E R*. For f E L 1 (R) we define the A-Fourier transform by 

f~(Y) = i f(x)e-~i~YXd~x; 
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here, d~x -- [A[1/2dlx where dlx is the standard Lebesgue measure on R. Then 

(11.23) ] l ( y )  = 1 l-ll2]X(yl ). 

Hence if V satisfies the conditions of Theorem 11.8, then we have 

[A[-1/2wV~(b/A) = [A1-1/2 / ks,~(a, b)V~(a/A)d~a. 

Hence 

w~X(b) = /[Alk~,v(Aa' Ab)V~(a)d~a. 

We define 

(11.24) k~,v,s(a, b) = [A[1/2ks,n(Aa, Ab). 

Hence, for V as in Theorem 11.8, we have 

w?X(b) = [ k~,v,s(a, b)VX(a)da. (11.25) 
J 

12. Genuine representations of GL2(R) 

We recall some facts from [7]. Let G = GL2(R) and let G* = {[g, e][ det(g) > 0}. 

Its center is 2. Let a be an irreducible admissible genuine representation of S. 

Let 5r~ be the space of a. Let # be a character of 2 whose restriction to 2 N 

agrees with the central character of a. We can extend a to a representation 

# × a of G* -- ZS' given by 

× = 

PROPOSITION 12.1 ([7]): The representation 7r = Ind(# × a,G*,G) is irre- 

ducible. Moreover, every irreducible admissible genuine representation zr of 
is of the form 7r = Ind(# x a, G*, G) for some irreducible admissible genuine 

representation a of S and some character # of Z. 

Let ~'~ be the space of 7r. It is easy to describe the unitary representations 

of G via the unitary representations of S. 

LEMMA 12.2: Let a be an irreducible admissible genuine representation of S. 
Then zr = Ind(# × a, G*, G) is unitary if and only ira and # are unitary. In 
that case, the G invariant hermitian form on ~ is given (up to a scalar) by 

< F1,F2 > V = <  Fl(e),F2(e) >~ + < Fl(el),F2(el) >~ 



48 E.M. BARUCH AND Z. MAO Isr. J. Math. 

where < ,>~  is the invariant inner product on J% and e, el are defined in 

Section 2. Here F~,F2 are in the induced space ~'., that is, Fi: G -+ J:. is 

smooth and satisfies Fi(g*~) = # × a(g*)Fi(~) where g* E G*, ~ E G and 

i =  1,2. 

Remark 12.3: I f ~  is given as a space of function ~ = {fa} where ]~: :~ ~ C 

and the action of S is by right translations, then we can realize ~r = 

Ind(# × a, G*, G) as a space of smooth functions F: G* × G ~ C satisfying: 

(1) h ~ F(h, ~) is in Ya for every fixed ~ E (~. 

(2) F(2g*,~) = #(2)F(g*,~) for all 2 E Z,g* E G* and ~ E G. 

(3) F(g~g~,~) = F(g~ ,g~)  for all g~,g~ e G* and ~ E (~. 

13. A kernel formula for the  act ion  of  w in th e  Whi t taker  m o d e l  

We use the results in Section 11 to derive a kernel formula for the Weyl element 

in the Whittaker model of a genuine irreducible unitary representation of G. 

This formula is an analog of the kernel formula in [5] for unitary representations 

of G which we reproduced in (6.1). We remark that the same method can be 

applied to prove the formula of Cogdell and Piatetski-Shapiro. We carry out 

this process for G in Appendix 2. 

Let ~v,s be an irreducible unitary representation of S as defined in (10.4). 

That is, assume that either s = ir, r E R or s E R and either 0 < s < 1/2 or 

s E - 1 / 2  + N. Moreover, if s E - 1 / 2  + N then we let ~'~,.., be the space of 

functions defined in 10.4. 

Let # be a unitary character of 2 extending the central character of 5~,s. Let 

r (# ,y , s )  -- Ind(# x 5v,s, G*, G). Then by Remark 12.3, ~ ( , , , , s )  is the space 

of functions F: G* x (~ ~ C satisfying h ~ F(h, ~) is in bye,,., for every fixed 

E G. In particular, 

(13.1) F(~s(a)n(x)g*, g) = #(~)'y(a)la] s+l (sgn(a))'F(g *, g). 

For F E 9v~(,,~,s) we define 

(13.2) VF,~(x) = F(wn(x) ,e) ,  Vf,~l(X) = F(wn(x) ,e l ) .  

13.1. WHITTAKER MODELS FOR 7r(~,77,8 ). Fix A e R*. Let 

= e 

and let ¢ be a character of N defined by 

= 
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Let ~r be an irreducible unitary genuine representation of G on a Fr~chet space 

iF = iF~ and let it be a character of 2 extending the central character of r .  Let 

L be a continuous linear functional on iF. We say that  L is a (¢, #) Whittaker 

functional on iT if 

L(~(2)~(n)v) = #(z)¢(n)L(v), for all 2 E 2,  n E N, v E Y. 

It is well known that  the space of such functionals is at most one-dimensional. 

Given a (~, #) Whittaker functional L on iF we let 

Wv(~) = L(Tr(O)v), g E G, v E iF. 

Then G acts on the space of such functions by right translations. This is called 

the Whittaker model of ~r. 

We now construct such functionals for 7r(#, ~?, s). 

For F E iF~(,,,,s) we define 

L+(F) = L-(F) = f 
Here dx = d),x. The integrals above are absolutely convergent if Re(s) > 0 

and they are defined by analytic continuation in s otherwise (see Section 10). 

It is easy to check that  L + is a (¢ ,#+)  Whittaker functional and that  L -  is a 

(~, # - )  Whittaker functional where 

(13.3) it + = #, it-(z(c)) = sign(c)it(z(c)). 

We remark that  L + or L - ,  but not both, could be identically zero on iF~(~,v,s). 

When these functionals are nonzero we obtain two Whittaker models for 

~r(#, y, s): One given by the functions 

W+ (9) = L+ (~r(~)F) 

and the other obtained by the functions 

W~j (8) = L -  (7r(.~)F). 

In particular, we have 

(13.4) W+(t(a)) = / F(wn(x), t(a))¢~ (-x)dx, 

WF(t(a)) = / F(wn(x), t ( -a ) )¢~  (x)dx. 
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If a > 0 then we have 

W + (t(a)) = / F(wn(x)t(a), e)¢~ (-x)dz 

(13.5) = / F(wt(a)n(a-lx), e)¢;~(-x)dx 

= / F(z(vfa)s(v ~-l)wn(x), e)¢~ (-ax)adx 

= #(yra)a(1-s)12~/F~,e(a). 

Here VF~,e is the ~-Fourier transform of VF, e (see (2.3).) We let x(la]) = 
#(X/r~)lal (1-~)/2. Then similar computations as in (13.5) will give 

W+(t(a)) = / x(ial)V~e(a) if a > 0; 
x([al)V~l (a) if a < 0; ( 

(13.6) 

and 

(13.7) 
{ x([a]) 'V~ l(a) if a > 0; 

Wg(t(a)) = x(lal)VF~e(a) if a < 0. 

Our goal is to prove the existence of functions k +,+ (a, b), k +,-  (a, b), k- ,+ (a, b), 

k - ' -  (a, b) such that 

(13.8) (wW+)(t(b))= / k+'+(a,b)W+(t(a))da + / k+'-(a,b)Wg(t(a))da, 

(13.9) (wWg)(t(b)) = / k-'+(a,b)W+(t(a))da + / k-'-(a,b)Wg(t(a))da. 

This will follow easily from (13.6), (13.7) and (11.25). By (11.25) we have 

wV~e(b ) = / k~,v,~(a,b)VF~,e(a)da, wV~ (b) = / k_:~,v,s(a,b)~/~e~ (a)da. 

Hence if we choose 

(13.10) k +'+(a, b) = x(~bl) k • (a b) ~(la]) -~ , ' ,~  ' 
0 

if a > 0 and b > 0; 

if a < 0 and b < 0; 
if ab < 0; 

{ ~--~k-~,,v,s(a,b) 
(13.11) k+'-(a, b) = x(Ibl) k. (a b) 

x ( l a r )  ~ , ~ , s ~  , 

0 
and similarly for k - '+  and k - ' - ,  then (13.8) and 

if a > 0 and b < 0; 

if a < 0 and b > 0; 
if ab > 0; 

(13.9) will be true. 
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LEMMA 13.1: 

(13.12) , (a-1)k+ '+(1 ,  ab) = lalk+'+(a, b), 

and the same is true i f  we replace k +,+ with k +,- ,  k -,+ and k ' 

Proof: The proof is by direct computation. We will assume ~ > 0 and prove 

the equality for k +'+. For the other cases the proof is similar. By (13.10), we 

have that  if ab < 0 then k+,+(1,ab) = k+'+(a,b) = O. Hence we can assume 

that  ab > 0. In that  case 

"a -1~ x(lab[) k ~1 ab ~ "(a-1)k+'+(l 'ab) ="~ ) X--~-~ ;~,v,s~ , J 

=2;~ l/2 , ( a - 1 ) , (  iV/'~-~llabl(1-s)/21ablS/2 

(13.13) × (Ks(47ri)~]abl 1/2) + i(-1)'+1Ks(-47ri)~[abll/2)) 

_22/2 .( "(X/q-~) ,(sign(a))]abl 1/2 

× (K~(41riAlab[ 1/2) + i(-1)V+1K~(-47riA[ab]l/2)). 

On the other hand, we have 

[alk+,+(a,b) = 

2~1/2 "(X/~-~)labll/2(Ks(4~ri)~lablU2) + i(_1)V+1Ks(_47~iA[abll/2)) 
.( v l) 

if a > 0 and b > 0 while 

la]k+'+(a, b) = 

2A1/2 "(X/r~l) lab]l/2(Ks(_4riAlab[1/2) + i(-1)'+'Ks(47dAlab]1/2)) 
.( v l) 

if a < 0 and b < O. Since 

1 i f a > O ,  
.(sign(a)) = i ( -1)v if a < O, 

we get our equality, l 

We now transform k +,+, k + ' - ,  k - ,+,  k - ' -  into functions on an open set of 

G. Fix A E R* and let ¢ = ¢~. Let ~- = r (# ,  ~/, s). Let Y~,¢:+'+, 3,~,¢'-'+, 2~,¢'+'+, .?~,¢'-'+ 

be functions on B w B  defined as follows: 

(13.14) + '+  k +'+ j~,¢ (t(a)w) = (1, a), 

j+ ~ (21n(x)~n(y)22) = .+ (~'1),+ (~'2)~3~ (x)~/)A (y)j+'~. (~). 
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Here ~ E BwB; j.,¢'+'-, 3.,¢'-'+ and 3.,¢-'- are defined in the same way. It is easy 

to check that j+ '+  and the others are well defined. Our main theorem of this 

section is the following. 

THEOREM 13.2: Let F E ~'~(#,~,s).  If  lr is a discrete series, we assume 

further that W+F(t(a)) and WF(t(a)) are of the order [all/2+s/  when lal is 

small. (Notice that this condition is satisfied by the K-finite vectors). Then 

: f j+~,~(gt(a-1))W+F(t(a))d*a -I- j j~((Jt(a-1))WF(t(a))d "a, 

Proof." Let ~ = t(b)w. Then 

.+,+ - - - 1  (gt(a )) = = ( a - l b ,  

= (a-lb, a-1)p(a-1)k+'+(1, ab) = #(a-1)k+'+(1, ab). 

The last equality follows from the fact that k+'+(1, ab) = 0 if ab < 0 and that 

(a-lb, a -1) 1 if ab > 0. By (13.12) we get that :+'+ = j~,¢ (~t(a-1)) = ]ajk+'+(a, b). 
After obtaining similar equalities for 3.,¢'+'-, J-'+~,~ and j~-~- we can use (11.22) to 

get the desired formula | 

Remark 13.3: The reader might find the transition from the kernel formulas 

of Section 11 to the kernel formulas in the theorem above a little cumbersome. 

Our opinion is that the kernel formula in the Whittaker model above is the 

more simple and natural of the two. We mention that the same Whittaker 

kernel formula appears in the p-adic case ([18], [4]) where it is proved differently. 

The main difference is that here we use the classification of irreducible unitary 

representations, while in the p-adic case only the existence of a Whittaker model 

is used. The reader is encouraged to compare the two proofs. 

We end this section with explicit formulas for :/r=+'+,¢ which we shall need later. 

These formulas are easy to obtain using (13.14), (13.10), (11.25), (11.13) and 

[14]. 
(1) 7r = r(p,~,ir), r e R. 
a > 0 :  

.+,+ ( t (a)w)  

= ~(lallkx,,,s(1,a ) 

= 
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= 21~l~/~tt(x/~l)lall/:(K~(4~iAlal ~/~) + i(-1)V+iKi~(-4~ri$lalU2)) 

a < 0 :  

I~l~/~(x/~)l~li/= ~[(~-(~)/~ + i(-1)'+~e(~)/~)J~(4~rlAIlal~/2) 
+ ( - e ( ~ ) / ~  + i(-1)'e-(~)/2)J_i~.(47~))~l)al~/~)] 
if )~ > O; 
IAl~/~tt(vf~)lal~/2 ~ [ ( e  ('~)/2 + i(-1)V+~e-('~)/~)Ji~(47r)AI]al ~/2) 
+ ( - - e - ( r r ) / 2  + i(-1)'e(~r)/2)J-ir(47r]AI]a11/2)] 
i fA  < O; 

= { 021)~l~12p(~/-~l)la1112 ~e-3"'~/2J~(47rl~l v/-~) 

j.,'~ (t(a)w) 

= { 02lAI1/2tt(v/~)lal~/2 ~ e - 3 ~ / 2  J~(4~lAI x/~) 

(4) 7r = ~-(#,~/, s), s E  - 1 / 2 +  N ,  s E v +  2N. 

j+'~+ (t(a)w) 

= { 0 21Xl~12tt(~)lali12 si~e3"~12J~(4~l)~lx/~l) 

j~j(t(a)w) 

= { 0 -21~Xl~/2~t(v~l)lall/2~e-3~/2j~(4~lAlx/~l) 

if a > 0 and  ~ > 0; 
otherwise.  

if a > 0 and  A < 0; 
otherwise.  

if a > 0 and  A < 0; 
otherwise.  

if a > 0 and  A > 0; 
otherwise.  

.+,+ j~,,  (t(a)w) = o. 

(2) ~ = ~(u ,  ~7, s),  s e R ,  0 < s < 1/2.  

a > 0 :  
.+,+ 3~,¢ (t(a)w) 

1 
1~ll/2 #( V/~])lal 1/2 ~ [ ( e  (ris)/2 -4- i(-1)'+1e-(~i~)/2)J~( 41rlAllal 1/2) 
+(-~-(~)/~ + i(-1)'~(~)/~)z_~(4~l~Hall/~)] 
if)~ > O; 

= IAi1/2#(~-~)lall/2~[(e-(~i~)/2 +i(-1)'+le(~i~)/2)J~(nTr}Allal 1/2) 
+(-e(~is)/2 + i(-1)'e-(~i~)/2)J~(47rl)~llall/2)] 
if A < O; 

a < 0 :  
.+,+ 3~,¢ (t(a)w) = O. 

(3) ~r = 7r(#,~/,s), s E - 1 / 2  + N ,  s E - v  + 2N.  

-+,+ j,~,¢ (t(a)w) 
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Remark 13.4: In the holomorphic discrete series (case (3)) we have that when 

"+'- = j - ' +  = j~-,~ = 0, and when A < 0, j+'+ "+'- = j - ' +  = 0. A > 0, j~,~ ~,~ ~,~ = J~,~ ~,~ 

A similar situation occurs in the anti-holomorphic discrete series. 

COROLLARY 13.5: Let 7r be a discrete series representation. Then 

J+'+[g3r,~p , J -~ J+'+tg-1),r,~, J-~,~(g) = j-~,~(g-1). 

.+,+ 
Proof'. Using the invariance properties of 3~,¢ it is enough to prove the equality 

for g = t(a)w. In this case g-1 = w - I t ( a - I )  _ z (_a-1) t (a)w.  Hence it is 

enough to prove that 

"+'+ + a "+'+ :~,¢ (t(a)w) = # ( - ) j . , ¢  (t(a)w) 

for all a E R*. This follows easily from the formulas above. I 

COROLLARY 13.6: Let 7c be a genuine irreducible unitary representation of  G. 

Then 
.4- + .4-,4- S~,~ (s(a)wo) = O({a[ 1/2) and S~,~ (s(a)w) = O(la{ 1/2) 

when lal is large. 

+ '+ and j~,~ 14. Local  integrabi l i ty  oi  3~,~ 

Let lr be a genuine irreducible unitary representation of G and fix a character 

¢ = Cx of N. Let j+'+ = j+'+ and j~-'- = j~-,~ be the functions on /~w/~ 7tAb 
defined in Section 13. We extend them to G by setting them to be identically 

zero outside of/~w/~. 

THEOREM 14.1: j+'+ and j ~ ' -  are locally integrable on G. 

Proo~ We note that G is a union of two connected components: 

U l = { ~ = [ g , e ] : d e t ( g )  >0}  and [ / 2 = { ~ / = [ g , e ] : d e t ( g ) < 0 } .  

It is enough to prove that j+,+ and j~-'- are locally integrable on each connected 

component. We will prove that j+'+ is locally integrable on U1, the other cases 

being similar. Let f E C ~  (G) be positive. We need to show that 

f u  Ij+'+(~)lf(~)d~ < oc 
1 
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for every such ] .  Let U' = U1 VI/~w/~. Then U' is the set of elements of the 

form j = [g, e] with g = n(x)s(a)z(c)wn(y). We write 

--fh Ij+'+ (.0)I f (.O)dj = ~L>O,a,~R"#,yeR .j+'+ ([n(x)s(a)z(c)wn(y), 1]) I 

x I([n(x)s(a)z(c)wn(y), 11)lal-:d*adxd*cdy 

fc>0,aeR ]j+'+([n(x)s(a)z(c)wn(y),-1]) + 
~x~yER 

× ]]([n(x)s(a)z(c)wn(y),-1])lal-2d*adxd*cdy. 
We shall show that  the first summand is finite. Similar arguments show that  

the second is finite. 

ij+,+(n(x)s(a)z(c)wn(y))lf(n(x)s(a)z(c)wn(y))laF2d, adxd, cdy 
c>0,aCR.* ,x,yER 

= f lj+'+(s(a)w)[( f f(n(x)s(a)z(c)wn(y))dxd*cdy)[a[-2d*a. 
c>O,x,yER 

Let Oil (], a) = fc>o,x,v~R f(n(x)s(a)z(c)wn(y))dxd*cdy. By Proposition 4.1 we 

have that  Oll(f,a) = 0 if ]a I is small and OH(f,a ) = O(la D if lal is large. Using 

Corollary 13.6 we get that  the above integral is finite. | 

15. I n n e r  p r o d u c t  in t h e  W h i t t a k e r  m o d e l  

Let (Tr, 9 t') be an irreducible genuine unitary representation of G with central 

character #. Let #+ and # -  be the two characters on 2 extending #. Let 

¢ = ¢~ be a nontrivial character of N. Let L + and L -  be (¢ ,#+)  and ( ¢ , # - )  

Whittaker functionals on ~ respectively and we assume that  they are nonzero 

if possible. 

Our aim in this section is to prove that  there exist nonzero scalars c + and c-  

such that  

(15.1) 

w£ (t(a))WF 2 (t(a))d*a 

is a G invariant continuous inner product on ~'. Here F1, F2 E Y and W~ (g) = 

L+(lr(g)F) for g E G, F E ~ .  In the discrete series case we will prove this 

formula for K-finite vectors and for vectors satisfying a certain growth condition. 

We believe that  the formula is true for all smooth vectors. 

The measure cl*a appearing above is d*~a. For the moment we will fix A = 1, 

da = dla the standard Lebesgue measure on R and d*a = da/la I. 
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Remark 15.1: The convergence of the above integrals follows from the fact that  

W~(t(a)) is rapidly decreasing at c~ and of the order of lal ~ with/~ > 0 at zero. 

(See (13.6), (13.7), Theorem 10.3, Lemma 10.2 and Lemma 11.7.) In the case 

of the discrete series we shall assume that  W~ (t(a)) is of the order of lal ~ with 

/~ > 0 at zero. It is also clear that  < F1, F2 > is continuous and invariant under 

/~, the upper triangular Borel of G, for every c + and c- and all such vectors. 

Thus it remains to prove the existence of c + and c-  such that  < F1, F: > is 

positive definite and invariant under w. 

15.1. PRINCIPAL SERIES. Let a = b~,ir be the representation of ~' on .~,,, , . .  

(See Section 10.) It is easy to see that  

fl, f~ >= /fl(wn(x))f2(wn(x))dx < 

is a convergent S invariant inner product on ~'~,,,,. By definition we have 

f: >= f v~, (x)V~ (x)dx. < fl, 

Since Vf, • L2(R) and VA • LI(R)  (here V = ~1) we have that  

Let #+ be a character of 2 extending the central character of a = av,ir and let 

~r = ~T(#, ~?, i t)  = Ind(G*, G, a ® #), realized on a space of functions F: G* x G --+ 

C satisfying (13.1) and the other relations of Section 12. Then by Lemma 12.2, 

(15.2), (13.6) and (13.7) we have that  

< El,F2 >-~/Fl(Wrt(x),e)F2(wrt(x),e)dx-{-/Fl(Wn(x),el)F2(wrt(x),el)dX 

(15.3) = f x ( t x l ) - l ~ w ~  +, (t(x))WT~ (t(x))dx 

[ x(lxl) -1 x(Ixl) -~ w~ (t(x))W~ (t(x))dx + 

15.2. COMPLEMENTARY SERIES. Let a = 5"v,s with 0 < s < 1/2. For f • ~-~ 

we define the intertwining operator 

(Af)(h) = [ f(w(n(y)h)dy. 
J 
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By (10.5), the integral converges absolutely for every h E 3 and Af E Fsrlrs. 
Therefore, it is clear that the form 

is a nonzero S invariant hermitian form, hence is a scalar multiple of an 3 
invariant inner product. We have 

Using the dominated convergence theorem we get that 
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We let 

(15.6) 

E. M. BARUCH AND Z. MAO 

Av,s(Z ) = [,(8)(esign(z)is~r/2 + i ( _ l ) n + t e -  sign(z)isTr/2); 

Isr. J. Math. 

then we have 

(15.7) (Af)(wn(x)) = f 9:(z)e2'~=z(27rlzl)-sA.,s(z)dz 
or, more generally, 

(15.8) (Af)(wn(x)) = IAt 1/2 f V~(z)e2~i~xz(27rlAzl)-sA,7,s(Az)dz. 

Let #+ be a character of 2 extending the central character of a = #,,it  and let 

7c = 7rt~,,~,i~ = Ind(G*,G,a ® it), realized on the space ~'~ which is a space of 

functions F: G* x G -~ C satisfying (13.1). Then by (15.4) and by Lemma 12.2, 

there exists a scalar fl such that 

< F2, F1 >=fl f(AF2)(wrt(x), e)F1 (wn(x), e)dx 

+ Z f(AF2)(wn(x), el)F1 (wn(x), el )dx 

is a G invariant inner product on 5v~. Here F1, F2 E $'~ and 

(AF) (9", g) = f F(wn(y)g*, 9)dy 

for every g* E G* and g E G. Using (15.8), (13.6) and (13.7) we get 

< F~,F, >=NAI 1/2 f Wf,,e(X) f 9~2,e(z)e2=~x=~(2~lAzl)-~A.,~(Az)dzdx 

(x) S 
(15.9) =/3 f f~¢=,.(z)9¢.,.(z)(2~rlAzl)-'A.,.(Az)dz 

=/3(27r)-']A]l/2-'An,,(A) f W+2 (t(z))W+ (t(z))d* z 

+/3(27r)-~[,~I1/2-~Aw,~(-A) f WF=(t(z))WF~ (t(z))d* z. 

To give a choice of/3 such that the form above is positive definite, it is enough 

to make sure that the coefficient of W+(t(z))W+(t(z)) is positive. Hence we 

can choose fl = An,,(A ) or/3 = An,,(A) -1. 
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15.3. DISCRETE SERIES. If ~r is a holomorphic discrete series and A > 0, then 

W / =  0 for every F E Y~. Hence (15.1) reduces to the form 

(15.10) < F1, F2 > =  c + f W +F, (t(a))W+2 (t(a))d*a. 

It is clear that  if the form above is positive definite, then c + > 0 and we 

can choose c + = 1. On the other hand, it follows from Theorem 13.2 that  if 

W+(t(a)) = 0 for every a e R*, then W + = 0, hence the form above is positive 

definite. By Remark 15.1 it is enough to show that  <, > is invariant under w, 

that  is, < FI,wF2 > = <  w-IF1,F2 > for every F1,F2 E Y~ satisfying the above 

growth conditions. To do that  we shall use Theorem 13.2 and Corollary 13.5. 

We have 

(15.11) 

= f W~ (t(b))W+2(t(b)w)d*b 

= / W~ (t(b))( / j+ '~+(t(b)wt(a-l))W+F2(t(a))d 'a)  

= f W+(t(a))W +, (t(a)w-')d*a 

= <  w-IF1,F2 > . 

Similarly for A < 0, where W~ will replace W+F, and 3~,~'-'- will replace j+'+~,x. 

The anti-holomorphic discrete series will work in the same way. We can restate 

this result in the following way: 

THEOREM 15.2: Let 7r be a discrete series representation of G. Then the form 

< F~,F2 >= f W+ f F~ (t(a))W+2 (t(a))d*a + W~ (t(a))W[2 (t(a))d*a 

is a nonzero, 9-skew invariant inner form on the space of K-finite vectors in Y~. 
Hence it is a restriction of a G invariant form to this space. Here ['1, F2 E Y~, 
and we note that for each fixed 7r, one of the integrands in the above formula is 
identically zero. 
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16. Inner  p roduc t  for SL2(R) 

In this section we translate the inner product formulas proved in the previous 

section for representations of S to inner product formulas involving Whittaker 

functionals. These formulas are needed for future work and will not be used in 

the rest of this paper. 

If (Tr, ~') is a representation of G with an invariant inner product <, > on Y 

and W is an S' invariant subspace of G, then the restriction of <, > to W gives 

an invariant inner product on W. In this way we can use the inner product 

formulas on irreducible representations of (~ to get inner product formulas on 

irreducible representations of :~. This is only needed for the discrete series since 

in the other case we already have available inner product formulas. 

We fix/~ # 0 and let ~ (x) = e 27r/;~x . If f is a function on G we set 

(f) = f (x)dx. L ~ 

16.1. PRINCIPAL SERIES. Let s E i R  and ~ E (0, 1}. Let av,s be the repre- 

sentation of S defined in Definition 10.1 acting on 2"o,.. If f E 2-a,., then L:~(f) 
above is defined via analytic continuation or via a principal value integral. In 

either case we have 

n ~ (s (a)f) = 7(a)(sgn(a))V lall-sna2~ (/). 

Let f l ,  f2 • 2-~,... By (15.2) the following is an S invariant inner product: 

</1,f2 > = f L~(fl)L~(f2)d)~ 

(16.1) =/I.XalL)'a2(fl)L)~a~(.f2---~da+/l~alL-)~a2(fl)L-;~a2(f2)da 

= I~]/L~(s(a)fl)L:~(s(a)f2)d *a+l~l/L-~(s(a)fl)n-x(s(a)f2)d *a. 

].6.2. COMPLEMENTARY SERIES. Let s • R and ~/ • {0,1}. Let 5r~,,, be 

the appropriate representation space. Then using (15.4), (15.7) and similar 

arguments as in the principal series case, we get that the following is an 

invariant inner product on 9r~,,,,, : 

< fl, f2 >= f L~(s(a)fl)LX(s(a)f2)d* a 
(16.2) 

J 

+ A.,~(~) f n-~'(s(a)fl)n-x(s(a)f2)d*a 

where Av,s(A ) is defined in (15.6). 
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16.3. DISCRETE SERIES. Let s • 1/2 + N and 7? • {0, 1}. Let 5~,,, be the 

appropriate representation space. Then using Theorem 15.2 and the vanishing 

of certain Whittaker functionals, we get that  the following is an S invariant 

inner product on the space of K-finite vectors in ~-~,,. : 

</1,/2 >= f (16.3) L~(s(a) f l )L~(s(a)f2)d* a. 

Here, we need to take A > 0 if av,s is a holomorphic discrete series representation 

and )~ < 0 if av,s is an anti-holomorphic discrete series representation. 

17. Besse l  d i s t r i b u t i o n s  on GL2(R) 

Let (u, H) be a genuine, irreducible, unitary representation of G on a Hilbert 

space H and let < v, w > be a nonzero G invariant inner product on H. For 

every continuous functional L : H ~  -+ C and every f E C ~  (G) there exists a 

unique vector Vf,L E H ~  such that  

(17.1) LOr(f)w ) -~< W,Vf,  L > for every w E H. 

Let # .  be the central character of 7~ and let it + and # -  be extensions of #~ to 

2 as defined in (13.3). Fix ¢ = Cx a nontrivial character of N. Let L + and 

L -  be (~b, #+) and (¢, # - )  Whittaker functionals respectively. We assume that  

they are nonzero if possible. By (15.1) we can normalize L + and L -  so that  

Here W + (~) = L + (u(O)v). We define the distributions J+¢ and J~,¢ on C ~  (G) 

by 

(17.2) J + ¢ ( f )  : L+(VI,L+), g~,¢(f) = L- (vy ,n - ) .  

LEMMA 17.1: Let u • H ~  be such that W : ( t ( a ) )  = 0 for a11 a • R*. I f r  is 

a discrete series representation then we assume that W+(t(a))  has a high order 

of vanishing at a = O. Then 

f = f. 
The proof is the same as the proof of Lemma 7.1. It is clear that we can 

replace #+ with #- in the above lemma. We define the distributions 
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LEMMA 17.2: Let u E Ho0 be such that W~(t(a))  = 0 t'or all a E R* and such 

that W+(t(a)) has a high order of  vanishing at a = 0. Then 

The proof is the same as the proof of Lemma 7.2. We replace (6.2) in the 

proof of Lemma 7.2 with Theorem 13.2. 

COROLLARY 17.3: Let f E Cco0(G ). Then 

j /+¢( f )  -+ = J L A S ) ,  = J7,¢(S).  

Proof: The proof is the same as the proof of Corollary 7.3 using Lemma 17.1 

and Lemma 17.2. I 

18. B e s s e l  d i s t r i b u t i o n s  o n  SL2(R)  

In this section we show that  the Bessel distributions on S = SL2(R)  are given 

by Bessel functions which are restrictions of Bessel functions from G = GL2(R) .  

Let (a, W) be a genuine, irreducible, unitary, representation of S on a Hilbert 

space W. We assume a has a nontrivial ¢ = ¢~ Whit taker  functional L. We 

note that  any a has a nontrivial ¢~ Whit taker  functional for some A E R*. 

Let # be the unique character on 2 which is trivial on Z 2 and agrees with 

the central character of a on the center of S. Let ~r = Ind(# × a, G*, G) be the 

representation of G associated to a as in Section 12. Let 7 ,  be the space of 7r. 

We can write 7 = 7 ,  = ~'+ • 5r~ - where 

7 + = { v E T . : T r ( S v ) = # + ( 5 ) v ,  for a l l z E Z } ,  

and 5r~ - is defined similarly. S stabilizes 7 + and we can identify 5 r +  with W. 

We also identify Woo with 7 + ,  which is the subspace of smooth vectors in ~'+. 

We also have that  

7o0 = 7 £  • 7 o. 

Given our V Whit taker  function L on 7o0, we define a (~b,/g) Whit taker  func- 

tional L + on 7o0 by setting L + = L on F + and L + = 0 on Fo0. 

Let < v ,w > be a S invariant inner product  on W. We can extend <, > to a 

invariant inner product  on F~ so that  <,  > is the same on 7 + and so tha t  ~'+ 

is orthogonal to 7 - .  We normalize L + (by normalizing L) so that  (15.1) holds 

with c + = 1. For each function ¢ E C~(:~)  there exists a vector v¢,n E 7 + 

such tha t  

L ( a ( ~ ) w ) = < w , v ¢ , L >  for a l l w E 7  + . 
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We define the distribution Ja,¢ on Cc°°(S) by 

J~,¢(¢) = L(V¢,L). 

T H E O R E M  1 8 . 1 :  

' J S  ' 

63 

J~,¢($) = J~,¢(s) = Jz,~(s) = 3~,x'+'+-(s) 

where Ir = Ind(# x a, G*,0) .  For f '  E C ~ ( S ) ,  we define as in [11] the orbital 

integral 

(18.1) f~N,Ni , / /  ~f,,¢ (g) = ¢(n(x)gn(y))¢(x)¢(y)dxdy. 

COROLLARY 18.2: Let a be a genuine irreducible unitary representation of 
with a nonzero ¢ Whittaker functional Then 

J~,¢(f ' )  = f j~,¢(ws(a))O;',~ (ws(a))la[2d * a. 

We conclude this section by listing the values of j~,x(ws(a)) for the various 

irreducible unitary representations of S. 

where 7r is the induced representation of G defined above. 

Proof: F i x C E  C~°(S). Let 2 2 = Z 2 x ± l  be the center of G and let U C 

Z 2 C 2 2 be a small open set around the identity element [e, 1] such that the 

mapping (~, z) ~ gz from S x U --~ G is an injection onto an open set in G. Let 

a E C~(U) be such that fz~ a(z)dz = 1. We define • E C ~ ( G )  by 

~(~) = ~ 0(~)a(2) i f ~ - - ~ z f o r g E S a n d z E U ;  

t O otherwise. 

It is clear that (I) E C~(G) .  Since # is trivial on Z 2, it follows that for every 
m E9 r+  

7r(~)w = / ~(~)Tr(~)wd~ = / , / z 2  ¢(~)a(z)a(~)#(z)wd~dz=a(¢)w. 

It follows that VL,¢ = VL+,~, hence J~,¢(¢) = J+¢((I)). By Corollary 17.3, 

. + , +  _ _ _ 
ds. = 3,,¢ (s)¢(s) . 

We now define 
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BESSEL FUNCTIONS ON S. Let ~ = ¢~. 

(1) a = a~,~ , r E R. 

ja,¢(ws(a)) = 
{ [A[1/2~/(a)(sign(a) )V[a[ -1 sin-~-~ir)[(e -(~rr)/2 -{- i(--1)V+l e(rr)/2)Jir(4T:[,~i[a[-1 ) 

+(-e("~)/2 + i(-1)"e-(=~)/2)g_~(-47rlAllal-')] 
if A > 0; -Tr rle(~rr)/2 + i(_l),+le-(rr)/2)jir(47r[A[[a[-1 ) [A[ 1/27 (a)(sign(a)) v [a]-I ~ tt 

+(-e- (~r) /2  + i(-1)'e('~)/2)J_ir(-4~r]A[]a[-1)] 
i r a  < 0; 

(2) a = av,~ , s E R,  0 < s < 1/2. 

j~,¢(ws(a)) = 
{ IA[1/UT(a)(sign(a))nla[-l ~ [ ( e  (~)/2 + i(-1)v+le-(~i~)/2)J~(47rlAl[a[ -1) 

+(-e-( '~s) /2  + i(-1)ne('~)/2)J_~(-4~[A[la[-~)] 
ifA > 0; 

tal + i ( -  (4.  tal- ) 
+ ( - e ( ' ~ ) / 2  + i(-1)"e-('i~)/2)g_~(-4r[Al[a]-X)] 
i r a  < 0; 

(3) a = 5v,~ , s E - 1 / 2  + N, s E - v +  2N. 

(18.2) j~,¢(ws(a)) = 
20JA[1/27(a)(sign(a )~la[ -1 ~ e - 3 ~ i s / 2  Js(47rlAlla[ -1 ) 

(4) a = 5~,~ , s E - 1 / 2  + N, s E v + 2N. 

ifA > 0; 
otherwise. 

(18.3) j.,¢(ws(a)) = 
{ 02[AI1/27(a)(sign(a) ) v[al -1  e3= s/2 Js(4 lAI la1-1) ifA < 0 ;  

otherwise. 

19. Bessel  identities 

In this section we establish a correspondence between irreducible unitary rep- 

resentations of G = PGL2 (R) and S = SL2 (R) by deriving identities between 

their Bessel functions. This correspondence is in fact the Waldspurger corre- 

spondence which was established in [21] using theta correspondence techniques. 

Fix an additive character ¢ = ¢~ of R given by ¢(x) = e 2~i~x with A # 0. 

Let D E R* and let CD(x) = ¢(Dx). Let 7(x,¢ D) be the Weil factor defined 

by 
")'(X, ~)D) = (2D)-l/2 esgn(£Dx)lri/4. 
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Let a be an irreducible unitary representation of :9 which is not a Weil represen- 

+ If a has nontrivial co-Whittaker functional, then its Bessel function tation re .  

j~,¢D is defined as in Theorem 18.1 and the discussion below it. We change 

the normalization of j~,¢D by changing the normalization of ds. We will fix 

ds = lal-2d~xd*~ad~y on the set of elements of the form n(x)s(a)wn(y). This 

will introduce an extra factor of [D[ -1/2 to the formulas in Section 18 where we 

replace ¢ = ¢~ with cO = ¢~D. Define a transfer factor 

(19.1) AD,¢(x) = 7(x, ~bD)~(2D/x)lxl 1/2. 

Let ~r be an irreducible unitary representation of G. 

Definition 19.1: We say that an irreducible genuine unitary representation a 

of S corresponds to r if the following equality (Bessel identity) holds: 

AD, ¢ (X)£(7[, 1/2, ¢)12DI j~,¢. 
(19.2) i,,¢(n(x/4D)wo) = n(~, 1/2) (ws(x)) 

for all x E k* 

The following theorem is the main theorem of this paper. Let 7rn,s be the rep- 

resentation (or irreducible subrepresentation) of G induced from the character 

(#,~-1) of the Borel B with #(x) = Ix[S(sgn(x)) ~ and Re(s) >_ 0,~/• {0, 1}. Let 

an,~ be the representation (or irreducible subrepresentation) of S induced from 

the character #' of the Borel/~s with #'([x,e]) = ~7(x)(sgn(x))~lxr(sgn(x)) n 
and Re(s) > 0,7/• {0,1}. (See Section 10.) 

THEOREM 19.2: For each irreducible admissible unitary representation lr of G, 
there exists a corresponding representation n' of S satisfying the Bessel identity 
(19.2). The following diagram describes the correspondence: 

G 
7f71, s a(2~l_l+sgn()~D))/2, s i fs  • iR or 0 < s < 1/2; 

~ l , d - 1 / 2  (7(l+sgn(AD)(-1)a+l)/2,d-1/2 I f  d • N .  

Remark 19.3: We took the approach of using the Bessel identity to define the 

correspondence. It is easy to check that a = O ( r , ¢ ° ) ,  where 0 ( . , ¢  °)  is 

the theta correspondence used in [21]. Thus the Theorem is equivalent to: if 
7[ t ----- O(71",¢D), then (19.2) holds. 

Proof: The proof is a simple comparison between the formulas in Corollary 8.4 

and the formulas at the end of Section 18. To verify the equality, we note that 
by [9] p. 2.27 (122), if ~- = r~,s with s E iR or 0 < s < 1/2 then e(~r, 1/2, ¢) = 
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(-1)7; and by [9] p. 2.29 (133), if 7r = ~1,d-1/2 with d 6 N then e(~r, 1/2,~) = 

(-I) d. m 

We can now prove an identity in the level of distributions. By [11], for each 

f E C~(G) there exists f '  • Cc°°(S) such that 

(19.3) m,N Of,¢ (n(a/4D)wo) = O~,:~D (ws(a))¢(-2D/a)[alU27(a, c D ) - I  

for all a • R*. (See (3.24) and (18.1) for the definitions of these orbital inte- 
grals.) Hence using Theorem 5.3, (3.25), Corollary 18.2 and Theorem 19.2 we 

get: 

THEOREM 19.4: Assume that f and f '  satisfy (19.3) and that ~r and a corre- 

spond as in Theorem 19.2. Then 

(19.4) I~,¢(f) = J~,¢D (f ')e(r,  1/2, ¢)I2DIU2/L(Tr, 1/2). 

20. A p p e n d i x  1: B o u n d s  on classical K-Bessel  functions 

We will need some bounds on classical K-Bessel functions. These bounds will 
follow from the following integral representation ([14], p. 140): Assume Re(u) > 
- 1 / 2  and l arg(z)l < lr. Then 

fo ~ s ~.-I/~ ( ~r ~ 1/2 e-Z e-Ss "-1/2 (1 + ds. 
(20.1) K,(z)  = \ ~ z /  F(u + 1/2) ~zz/ 

LEMMA 20.1: Assume that u is in a compact set Q in the region 0 <_ Re(u) 
_< 1/2 and that z ~ 0, Re(z) _> 0. Then 

[Ku(z)l < < 0  [Z[ -1/2e-Re(z) 

By taking the absolute value in the integral representation (20.1) we Proo~ 
get 

e -  Re(z) c~ S 
< <  i z l - ' , '  + I + 

Since 
IWV-1/2I = [wlRe(u)- l /2  e -  arg(w) Ira(v) 

(here ] arg(w) l < rr) and since v is in a compact set Q as above, we get that  

Iw"=X/~ I <<Q Iwlae(")-l/2. 
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We set w = 1 + s/2z. Since Re(z) _> 0, we get that lwl >_ 1. Since Re(u) _< 1/2, 

we get ]w~-l/21 <<Q 1. Hence 

5 IK,(z)I <<Q N-U2e -Re(z) e-ssRe(v)-l/2d8 

= N - 1 / 2 e - R e ( z ) r ( R e ( , )  + 1/2) 

and the result follows. (We used the fact that  both 

1/IF(u + 1/2)1 and r ( ae (u )  + 1/2) 

are bounded on Q.) | 

We can improve the above result as follows: 

LEMMA 20.2: Assume that u is in a compact set Q in the region 0 _< Re(u) 

_< 1/2 and that z ~ O, Re(z) _> 0. Assume that A = max{Re(u) : u E Q} ~ 0. 

Then 
Ig~(z)l <<Q N-~e -Re(z). 

Proo~ The proof follows the same lines as above. We replace the inequality 

1(1 + s/2z) È-U2i <<Q 1 with the inequality 

I(1 + s12z)~-~121 <<Q Is/2zl ~-1/~ 

To get the last inequality, we note that z ~ 0, Re(z) _> 0, and s > 0 imply that 

!1 + s/2z I > 1. Hence tl + s/2z] Re(~)-l/2 <_ ]1 + s/2z} ~-1/2. Also, ]1 + s/2z] 
> ts/2zh hence I1 + s/2zl~-l/21 <_ Is/2zl x-l~2, l 

LEMMA 20.3: Assume that Re(u) > 1/2 and that l arg(z)[ < 7r. Then there 
exist positive constants C1, C2 which depend on u (but not on z) such that 

IK~(z)l __ Clizi-1/2 e -Re(z) -[- C21zI- ReC~) e - Recz) 

Proof: We again use the integral representation (20.1). We will divide the 

integration into two regions: From 0 to 2 M and from 2{z I to e¢. When s _< 21z I 

we have that  11 +s/2z[ _< 2. When s > 2[z I we have that  I1 +s/2zl < 21s/2z I = 
Is/z I. Hence 

IK~,(z)l <<~lz l - ' /2e  -Re(~) 

× ( L21=te-ssReC~)-l122ReC~)-l12ds + L°°e-ssReC~)-l121slzlReC~)-l12ds) 
Izl 

< <,lzl-~12 e-  Re(:) 

X ( L =  e-s sRe(,)-'122Re(,)-i12 ds + lzl'12-Re(,) L ~  e-S s2 Re(,)-' ds ) 

<<vCLuizi-ll2e-Re(z) + C2,~lzi-ae(~)e-Re(z). | 
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From Lemma 20.1 and Lemma 20.3 we get: 

COROLLARY 20.4: Fix u such that Re(v) >_ 0. Assume that Re(z) >_ 0 and 

that [z] is large. Then 

I/<.(z)l << Iz1-1/2. 

21. Append ix  2: C o m p u t a t i o n  of  Bessel  funct ions for GL2(R) 

In this appendix we give a proof of the kernel formula (6.1) of Cogdell and 

Piatetski-Shapiro [5]. Our proof is different from the one which was communi- 

cated to us by Jim Cogdell. The proof is identical to the proof of the kernel 

formula (13.8) for G which was derived in Section 10, Section 11 and Section 13. 

A different proof for this kernel formula in the case of principal series represen- 

tations was obtained independently by Motohashi in [15]. 

We will sketch the details here and refer the reader to the proofs in the above 

sections. Let G = GL2(R). Let ~? E {0,1} and s E C. Let IIn,s be the 

representation of G on the space of smooth functions f:  G ~ C satisfying 

(21.1) f (n(x)t(a)z(b)h) = (sign(a) )~[a[S+x/2 f (h ) 

w h e r e x E R ,  a E R * a n d h E G .  
We shall assume that Re(s) >_ 0. When IIu,s is irreducible, that is, s 

d -  1/2 for some positive integer d, we let 7rv,s = IIv,s. When s = d -  1/2 

and d is a positive integer, then IIv,s is reducible and we let rv,~ = 7~v,d_l/2 
be the unique irreducible subspace of H,,s. Since tO,d-l/2 ~-- lr1,d-1/2, it is 
enough for us to consider the case ~1,d-1/2. We will only be interested in 

the unitary representations: The complementary series representations where 

0 < s < 1/2, the principal series representations with Re(s) = 0 and the discrete 

series representations 71" d ---- 71"l ,d_1/2.  It is possible to obtain a kernel formula 

for all irreducible admissible representations of G, but in the nonunitary case 

the kernel formula can only be applied to certain vectors in the representations 

whose Whittaker functions behave nicely at zero. It will be obvious from our 

proofs that such formulas hold in these cases. In the unitary representations 

case, the kernel formula should hold for every smooth vector. We will prove 

that the kernel formula holds for every smooth vector in the complementary 

series and in the principal series and that it holds for every K-finite vector in 

the discrete series. 

We let ~)(~, s) be the space of functions V/, f 6 r~,s defined by 

Vf(x) =/(won(x)). 
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As in (10.5), we have that VS(x ) and all its derivatives satisfy 

y)n)(x) = O(Ixl-2S-i). 

Hence, if Re(s) > 0 and V E Y(y, s) then we can define 

~(y) -= ?l  (y) = / R  V(x)e-2~iyXdx" (21 ,2) 

It follows from standard Fourier analysis that: 

LEMMA 21.1: Assume that Re(s) > 0 and V E ~;(q,s). Then "V is continuous, 
bounded and rapidly decreasing. 

Finally, we shall consider another model for ~v,s, which we denote by ]}(q, s), 

consisting of functions ~', V E Y(~, s). If Re(s) > 0 then V is defined via 

(21.2). If Re(s) = 0 then V is defined via analytic continuation of a section 

in the following way: Let K -= SO(2). A function ]s E Hv,s is a section if 

the restriction of f~ to K is a smooth function independent of s. For every 

¢ E H~,iro we can choose a section f~ E H~,~ such that firo = ¢. We denote 

Vs = Vf.,, hence Viro = V¢. Then 

(21.3) V~(y) = lim V~(y)= lim f Ys(x)e-2"iYXdx 
s-+iro s--+zro JR  

where the limit is taken on a compact path from the right of iro. Our aim is to 

find an explicit formula of the following nature: 

woV(b) = (woV)A(b) = / R  ks'v(a' b)~/(a)dla. (21.4) 

To do that we shall need the following Theorem. For the proof see Theorem 10.3. 

THEOREM 21.2: Let fs E H~,s be a section and let s be in a compact set Q in 
the half plane 0 < Re(s) < 1/4. Let Vs = Vf~ E V(~, s) be a section as above. 
Then ]~'s(Y)l <<Q [y[-1/4 and Vs is rapidly decreasing, independent ors E Q. 

We shall also need the following Lemma for the discrete series. For the proof 

see Lemma 11.7. 

LEMMA 21.3: Let V E l ? ( 1 , d -  1/2) be a K-finite vector. Then IV(a)[ = 
O(lal 2d-1) when lal > 0 is small. 
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21.1. COMPLEMENTARY SERIES. Fix 0 < s < 1/2. Let V • V(~,s). As in 

(11.4) we use Fourier inversion to write 

i ( y )  = lim f V(x)e-2'~iY~e-5(l~l+l~r~)dx. 
5--+0+ J 

Now we get 

(woi)(b) = lim [ f(won(x)wo)e-2~rixbe-5(Ixg+lxl-1)dx 
5--+0+ J 

= lim ff(n(x-1)t(-x-2)z(x)won(x-1))e-2"i~be-5(IxJ+lx]-l)da.dx 
5-,0+ J 

(21.5) = lira f(-1)Vlxl-2S-le-2"iZbe-5([x[+lx{-1)V(x-1)dx 
5-,0+ J 

= 5-,o+lim(-1)Vf{x'-2S-le-2~iXbe-5(Ixl+lxl-~'(fi(a)e2"ia/x) 

=sli_n~+/i(a)((-1)V f lxl-2S-ie-2~rizbe2"ia/Xe-5(lzl+lxl-i)dx)da. 

Here, the change of order is justified as in Lemma 11.2. Let 

b) = ( -1 )  v f Ixl-2S-le-2~rixbe2ria/xe-6(Jx[+JxJ-i)dx. ks,v,5(a, 

Then for Re(s) > 0 and V • Y(y, s) we have 

wi(b) = lim f i(a)k~,n,5(a,b)da. (21.6) 
6-.0 + J 

By (11.9) we have 

ks,,,5(a, b) = (-1)V(K(2s,(f  - 2~ria,6 + 2rib) + K(2s,5 + 2ria,5 - 2rib). 

Now we use Lemma 21.1, Lemma 11.4, Lemma 20.2 and Corollary 20.4 as 

in Section 11.3 (see also the proof of Lemma 11.5) to apply the dominated 

convergence in (21.6). We conclude that if i ( a )  has a large order of vanishing 

at a = 0, or if V is a smooth vector in the complementary series, or V is a 

K-finite vector in the discrete series, then 

wi(b) = lira f i f ( a ) (  lim ks,v,5(a,b))da. (21.7) 
5-,0+ J 5-,0+ 

Let ks,v(a, b) = lims-,o+ ks,v,5(a, b). Then 

ks,n(a, b) =(-1)V(K(2s, -2ria, +2rib) + K(2s, +2~ria, 5 - 2~rib)) 
(--1--2~)(-- s~n(a) - - s~n(b) )~ i  r~  t ~ ( -  s~nla)~4s~'n(b))~i 

(21.8) =(-1)'72]a/b]-S[e 4 lX2s (47r V laole ) 
+ e (-,-2.)(s~.(o)+.,.(~)).~~ K2s(4~r ~ e  (sgn(u)--~$n(b))vi )]. 
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21.2. PRINCIPAL SERIES. As in Section 11.4 we fix so E C such that  Re(so) = 

0. We fix 1Io E Pv,8o. Then there exists a section V8 e ])v,8 such that  Vso = Vo. 

By (21.3) and (21.7) we have 

(21.9) wl)8o (b) = lim f ks,~(a, b) Vs(a)da, 
8--->8 0 J 

where the limit is taken on a compact path to So coming from the right. Now 

we use Theorem 21.2 and bounds on ks,v(a, b) in Section 11 exactly as in Sec- 

tion 11.4 to apply the dominated convergence theorem in (21.9) and get 

(b) = i ks°'v(a' b)?8o (a)da. w ~/'s o 

21.3. DISCRETE SERIES. For the discrete series we use Lemma 21.3, and 

the bounds on ks,v,~(a, b) from Section 11 to apply the dominated convergence 

theorem in (21.6) and get (21.7). 

21.4. GENERAL FOURIER TRANSFORM. We can generalize (21.4) in the fol- 

lowing way. Let ~ e R* and let ix  be the )~-Fourier transform of ] as defined 

in (2.2). Let dxx be the measure defined in (2.1). Then 

(21.10) ](y)  = 

Therefore if V = Vf is as above, we have 

= I 1-1 f ks,,(a, 

Hence 

w°?)~(b) = IAI1/2 i ks,,(.~a, Ab)?:~(a)d;~a. 

We define 

(21.11) kx,,,s(a, b) = i~tl/2ks,,(Aa, Ab). 

Then for V = Vf as above we have 

(21.12) w°VX(b) = i kx,v,8(a, b) V:'(a)da. 

21.5. A KERNEL FORMULA IN THE WHITTAKER MODEL. We now translate 

this kernel formula into the Whittaker model. For every ] E ~rv,8 we define 

(g) = f f(won(x)g)e-2"iXXd~x. Ws,  g 
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The integral converges or is defined by analytic continuation. We have 

(21.13) 

Wf(t(a)) = / f(won(x)t(a))e-2~i~Xd~x 

= / f(t(a-~)z(a)won(xa-~)) e - ~ d ~ x  

= (sgn(a))~lalS/~-~ / f(won(x)) e - e ~ d ~ x  

Jx,~,s(a, b) = (sgn(ab)) ~ la/blS-S/~k~,~,s(a, b). 

Thus 

Jn,s(a, b) =(-1)nl,~l sgn(ab) )nlabl 1/2 

(21.4) × [e (- 1-:.~)(- .~n(~ ~)- ~g. . (~b)~4 K2s (47rtA x/[able~ (- ~.(~)+~,.(~b))~i4 ) 
( - - 1 - - 2 s ) ( s ~ n ( ) ~ a ) ~ - s ~ n ( A b ) ) ~ _ ~ i  _ ~ ( s g n ( ) ~ a ) - - s ~ n ( ) ~ b ) ) f r i  

+ e 4 K2s(4~lA[x/[ab[e 4 )]. 

It is easy to check that: 

LEMMA 21.4: Jx,s,v(a, b) = Q(ab) for some function Q, that is, J~,s,v(a, b) = 
J~,s,v(ab, 1). 

We define a function J~,v,s: BwoB --+ C by 

j~,v,s(t(x)wo) = Jx,v,s(x, 1), 

j~,v,s(n(y)z(c)t(x)won(z) ) = e2"i(x+Y)j~,s(t(x)wo). 

We have 

(21.15) j~,v,s(t(x)wo) = 
1 2 1 2 (l~-2s)Tri (-1-2s)~i 

Ixl / 
i f x  > 0; 
21~I1/21xI1/~(K2~(4"1~Iiv~) + g ~ ( - a ~ l ~ l i ~ ) )  
= I~i l j :  ~ ( - e  ~' '  - e -s '~) ( J~ (a ' l~ l  v ~ )  - J-2~(4"lhi v ~ ) )  
if x < 0 .  

we get that 

Now rewriting (21.12) using the above formula we have 

(sgn(b)n)[b[S-U2Wf,~ (t(b)wo) = / kx'n,s(a' b)(sgn(a) )nla[S-1/2Wf ,x (t(a) )d~a. 

Writing this in the form 

Wf,~(t(b)wo) = f J~,n,s(a, b)Wf,x(t(a))d*a 
J 
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That is 

(21.16) j~,n,s (t(x)wo) = 

{ 4(--1)'l~lll21xll/2 cos(sTr )/(2s (47r I ~1V/~) 
I ~l' i21xl'12 ~ ( J2~ ( 47rl~l vi-p-~) - ,s-2~(4~-I,~1 v"T~)) 

ifx > 0; 
if x<0 .  

73 

22. Appendix 3: Fourier transform and relative Bessel functions 

S~ lxl-ll2 j~(alxl ~12) sin(xy)dx 
o¢) 

v ~ c ° s  - ~ + S i y l  4 J~/2 ~ , 

L ~ x-1/2 K2~,(axU2) cos(xy)dx = 

7r 3/2 a 2 ~Tr a 2 7r 

-4~/~cos(vTr) (J~ (8-~) sin ( ~ 8M 4) 

wr a 2 4) )  

L oo x-1/2 K2~( axl /2 ) sin( xy )dx = 

7r 3/2 a 2 vTr a 2 ~r 
-sgn(y) 4X/~ cos(v~r)(J~ (8-~) cos ( ~- 81y I ~-) 

vT; a 2 7r 
- Y" (8-~1) sin ( 2 8]-yl 4 ) ) '  

f; / /  o Ixl-ll2j~(alx1112) cos(xy)dx = x-1/2j~,(ax 112) cos(xy)dx 
oo 

L 
oo 

-=-- - -  x - 1 / 2  J v ( a x l / 2 )  sin(xy)dx 

= x/lYl sin ( - -T + 81Yl 
sgn(y) nl~, vT~ a~ 71" 

4) J~/2 (8~y~)" 

Consequently we have 

_9 71-1/2 ,~2 (22.1) Ixi-1/2jv(aixll/2)eiXydx = ~ e s g n ( y ) ( s - ~  - '~ - -~) i r  " [ a2"~ 
oo 41yl " ~ / :  tSly l ) '  

We recall some formulas from [6]: 
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Now define 

L o¢ x-1/2 K2.(axl/~) eixu dx = _ 

x 

71-3/2 

4V/~ cos(ulr) 
a 2 ~,n ~ 2 (sgn(y)iesgn(y)(s-~-~-+-4)iju(~y~) 

a 2 t,~t 2 

\ S l ~ l ~  

d•0 

° °  

](y) = .f(x)eiZVdx, 

where dx is the standard Lebesgue measure, and 

]~(y) = f(x)e: ' i~Yd~x. 

Then we have 
]~(y) = p,l~/~ ](2~:,y). 

Hence we have 

.L ~ 41,~l ~/~ cos(s~)x-~/~:~s(4~J~lxl/~)e~,~d~x (-1)" 

~r3/2 
=4(-1) n+l IAI cos(sTr) 

4 ~ c o s ( s T r )  

× ( sgn( Ay)ieSgn()~Y)( ~ -V+ -~ )i Js ( 7~1~1 ~ 
', lyl J 

+ esg°(~)( ~'~ . . . . . . .  (~I:~1~ ~ -  - T-'- ~ " ys \ - ~  ] ] 

=(_l)n+ll~il/27r(sgn(~y)iesgn(AY)('-~+~)ijS(~y~) 

+~ ~k lyl ]] 
=(-1)  ~+~ i~1~/2~ e '~  

~ s i n ( ~ s )  

× [(sgn()ty)ie sgn()~y)(-~+?) sin(~rs) + eSgn(~Y)(-~+~ ) cos(~rs)) 

=(_l)n+, IAI 1 /21r  e ~  (eSgn(),y)(~+-~) jS(~yA~) 
~ - ~ s i n ( ~ )  

- -  esgn(AY)(--5-+'W) J-s 
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and 

/~°oo 'AI1/2 sin(:s ) Ixll/2(J2s(47rlAlX/r~) - J_:~(47rlAlV/~))e2r°'XUd~x 

- r r  7r ~/2 (eSg.(~)(~4_ ~ _  ~)ij  (~1,~1- I 
= I~lsin(~-s) ~ ~ k - M )  

-csgn(y)(~+'~--'~)iJ_s(~l )) 
_ .~i . [TPI~I~ csgla()W)(~._.~)ijsCT~l)~l~ ~ - I X l ~ / 2 "  . e ,  (csgn()w)(-'~---~)~Js\ lyl ] - - ~' lyl ) )  sin(~),,,/-~TFj 

Hence using the formulas in (21.16) and the above formulas we get that 

/_ '~ lxl-lj~,n,8(t(x)wo)e2~iXXYdxx 
o o  

_ iAIl/~ e-~A[((_X)7?+lesgn()w)( ~d+V)_esgn¢)~y)(--~-T)~JsCT(l'~l ~ 
sin(~s)¢21yl ' ~ lyl .J 

+ e  g t y n ~ - T ) ) j _ s ~ ,  {Yl ./.I 

_ I)q1/2~ e-.~eSgn()~y)(- ~ [((_l)n+lesgnCXu)~-~ 
-- sin(~-s) V / ~  

+ sgn('~Y)i~n(~)(-~)J~ Iul ' 

+ (( 1),e ~g"(~)(-7 ~) _ . ~ .  ~, ~.~ (~-I~1"11 
- sgn(Ay)~e g ( Y)(~-) )J-s \  [Yl ) j '  

22.1. DISCRETE SERIES. If ~ = 1 and s = d - 1/2 with d E N, then we have 

(22.2) j~,,,~(t(x)wo) = 
{ ~.Xli/~l~l ~/~ ~ ( 3 , ~ d - ~ ( 4 ~ l . X l v " j - ~ T )  - J-¢~d-i)(4~l.Xlv'q~T)) if x < O; 

if x > 0 .  

Since sin(~-s) = (-1) d-1 and J-(2d-1)(z) = --J2d-l(z), we get that 

(--1)d21AI1/2~rlxll/2J2d_l(4rlAIX/~) if x < 0; (22.3) j~,n,s(t(x)wo) [ o if x > 0 .  
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Hence we have 

i f ( _  1)a21~ll/~=lxl-1/2 J2d-1 (47r)~v~l)e2"i~XYdxx 
oo 

= (-1)  a IAI1/27rV/2e-~eSgn(~u)-~, 
1y11/2 ~ J<~_~l : (~r l , t l l lY l )  

= (sgn(y)~,) ~ ? ~  e~ &-I/2(~I,~I/M). 

23. Appendix 4: G e n e r a l  t h e o r y  o f  Bessel- l ike d i s t r i b u t i o n s  

Bessel-like distributions on a reductive group G were defined by Gelfand and 

Kazhdan [8] and by Shalika [17]. We shall define the same distributions using a 

"trace class" approach. 

Let H be a separable Hilbert space with an inner form <, >. Let ~,/7 be linear 

functionals on H (not necessarily bounded). We say that  (A, fl) is a summable 

pair if there exists an orthonormal basis f~, i = 1, 2 . . . ,  such that  

(23.1) ~ I,~(f~)~(fj)l < oo. 
i , j  

LEMMA 23.1: Assume that  (A, fl) is a summablepair. Let ei,i = 1 ,2 . . . ,  be an 

orthonormal basis. Then 

(23.2) S(A,/7) = E ~(e/)~(e/) 
i 

converges absolutely and is independent of the orthonormal basis {ei}. 

Proof." Writing e~ = ~ < e~, fj > fj we formally have 

(23.3) ~ A(~)Z(~) = ~ ~(f~)Z(A) < ~,f~ >< fk,~ >. 
i i , j , k  

We would like to show that  the right hand side is absolutely convergent. We 

have 

E t  < ei'fJ >< ]k'ei > l <- ( ~  le~']j 

hence 

2)1'2 

i , j , k  j , k  

= 1 ,  
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since (A, 8) is a summable pair. This implies that  (23.3) holds and that  the left 

hand side of (23.3) converges absolutely. To show that  it is independent of the 

basis we use the following equality: 

k ~ j k 

(23.4) = Z A(fk)~(fk). I 
k 

COROLLARY 23.2: I f  (A, A) is a summable pair, then A is a bounded linear 

functional on H. 

Proof: By Lemma 23.1, S(A, A) = ~ i  ]A(ei)] ~ < oo and this sum is independent 

of the orthonormal basis {ei}. Assume that  A is not bounded. Then there exists 

a sequence of unit vectors vn E H, n = 1, 2 . . .  such that  ]A(vn)] > n. Since each 

vector v,, can be part of an orthonormal basis, it follows that  S(A, A) > n 2 for 

every positive integer n. Hence S(A, A) = c~, a contradiction. I 

2 3 . 1 .  BESSEL-LIKE DISTRIBUTIONS. We shall now apply the previous dis- 

cussion to the case of admissible representations of reductive groups over local 

fields. 

Let k be a local field and let G be the k points of a reductive group defined 

over k. Let dg be a fixed Haar measure on G. The space C~(G) is the space of 

compactly supported, smooth functions on G if k is archimedean, or the space 

of compactly supported, locally constant functions if k is non-archimedean. Let 

(Tr, H) be an irreducible admissible representation of G on a Hilbert space H. 

For ¢ E Cc°°(G) we define the bounded linear operator ~r(¢): H --+ H by 

Let Hoo = {~r(¢)vif E Cc°°(G), v E H}. If k is archimedean then we topologize 

Hoo in the usual way. If k is non-archimedean then we give Hoo the discrete 

topology. 

Let A be a continuous functional on H ~  and 0 E Cc~(G). We define the 

functional A m on H (see [17]) by 

= v H .  
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LEMMA 23.3: Let ~, ~ be continuous linear functionals on H~.  Let ¢1, ¢2 • 

Cc~(G). Then ()%~ ,~V2) is a summable pair. 

Proof'. If k is non-archimedean, then 71"(¢1) and ~r(¢2) are of finite rank and 

the proof is immediate. 

Assume k is archimedean. We shall assume for the moment that G is linear 

and connected. For the general case the proof will follow the arguments in [23] 

8.1. Let K be a maximal compact in G and ~ be the Lie algebra of K. Let Z(t~c) 

be the center of the universal enveloping algebra of tc ,  the complexification of 

t. We write HK = ( ~  H~, where HK is the space of K finite vectors in H, r is 

an irreducible, finite-dimensional representation of K and H~ is the r isotypic 

component of HK. Since rr is admissible, H~ is a finite-dimensional space. Let 

{v~} be an orthonormal basis for H~. For z • Z( tc) ,  we denote by X~(Z) the 

value of the character of T on z. We have 

Z 1)~¢1 (Vi)/~¢2 (Vj)] = E 1)~(7r(¢1 )Vi)~(7~(¢2)Vj)] 
i,j i,j 

- ]X~ (z)]-ll Z ]A(Tr(Ol )~(z)vi)/~(~(¢2)vy)] 
i,j 

= I Xr (Z)l - l l  )Vi)Z( (¢2)V3)l 
i,j 

< [X~(z)]-ldim(g~)2]lA~¢~ 1111/~¢2]1. 

The proof now follows from the proof of [13] Theorem 10.2 or [23] Lemma 8.1.1. 
| 

COROLLARY 23.4 ([17] Proposition 3.2): Let A be a continuous functional on 

H~  and ¢ • Cc~(G). Then the functional A¢ is a bounded linear functional on 

H. 

Proof'. By Lemma 23.3, (A¢, A¢) is a summable pair, hence by Corollary 23.2, 

A¢ is bounded. | 

We define the distribution B~,~ by 

B~,e(¢l, ¢2) = S(~¢1, ~¢2), ¢1, ¢2 E Cc~(a). 

Let ¢1, ¢2 • C~  (G) and x • G. Define 

Rx(¢l)(g) - -¢(gx) ,  ¢ l ( g ) = ¢ l ( g  -1) 
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and 

¢1 * ¢2(x) = ]c  ¢l(g)e (g-lx)dg" 

Assume now that  zr is unitary (and irreducible). Let <, > be a G invariant 

inner product on H. Since ~r is unitary, it follows that  if {ei} is an orthonormal 

basis for H,  then {Tr(x)ei} is also an orthonormal basis of H. Therefore by 

Lemma 23.1 we have Bx,~(R=Cl,R=¢2) = Bx,¢(¢1,¢2) for all x E G. Hence 

there exists a unique distribution Ja,~ on G such that  

(23.5) Bx,Z(¢I, ¢2) = Jx,e(¢l * ¢2). 

We call Jx,z a Bessel-like distribution. A distribution of this type has been 

constructed in [17] p. 184. We now recall this construction and show that  

it agrees with our construction. The construction in [17] works for general 

admissible representations (as opposed to unitary representations in our case). 

It is possible to extend the discussion here to such representations. However, 

since we are only interested in unitary representations we leave this construction 

as an exercise. A hint can be found in [1] Lemma 6.1. 

Recall that  by the Riesz representation theorem, every bounded linear func- 

tional A on H is associated to a unique vx E H such that  

A(u) = <  u, v>, >, u E H .  

LEMMA 23.5: Let (A, 3) be a summable pair of bounded linear functionals. Let 

S(A, ~) be defined as in (23.2). Then 

= <  vz,v  > .  

Proof: Let {ei} be an orthonormal basis for H.  Then v~ = ~ < vx,ei > ei = 

A(ei)ei and vz = Y~ < v~, ei > ei = Y~ ~(ei)ei. Hence 

< > =   (ed (ed. m 

COROLLARY 23.6: Bx,~(¢I, 42) = <  vZ,2,vx~, >. 

COROLLARY 23.7: J~,~(¢) = A(vB$ ) = ~(vx~). 

Proof: We have that  

JX,fl(~l * ~2) = Bx,B(q}l,~2) -~-< vflg~2,vx¢l > •  ,~4h (v~,~2) = )~('K(q~l)Vfl~b2). 
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It is easy to check that  zr(¢l)V~, 2 = v~(~1.~2)., hence we get the first equality. 

In a similar way we get that  

J~,~(¢1 * ¢2) = ~3(v~(,~.~1).). 

Since (¢2 * ¢1)~ = ¢1 * ¢2 we get the second equality. | 

Using the above form for J we can express J as a sum as in Lemma 23.5. Let 

{ei} be an orthonormal basis of smooth vectors. Then 

(23.6) d~,z(f) = ~ A(Tr(f)ei)-~(ei). 

Remark 23.8: Assume that  k is archimedean. It is easy to see, as in [17] p. 184, 
that  the distribution J~,~ is an eigendistribution for the center of the universal 
enveloping algebra of 0, the Lie algebra of G. 

References  

[1] E. M. Baruch, On Bessel distributions for GL2 over a p-adic field, Journal of 
Number Theory 117 (1997), 190-202. 

[2] E. M. Baruch, On Bessel distributions for quasi-split groups, Transactions of the 
American Mathematical Society 353 (2001), 2601-2614 (electronic). 

[3] E. M. Baruch and Z. Mao, Centra/value of automorphic L-functions, preprint. 

[4] E. M. Baruch and Z. Mao, Bessel identities in the Waldspurger correspondence 
over a p-adic field, American Journal of Mathematics 125 (2003), 225-288. 

[5] J. W. Cogdell and I. Piatetski-Shapiro, The arithmetic and spectra/analysis of 
Poincard series, Perspectives in Mathematics, Vol. 13, Academic Press, Boston, 
MA, 1990. 

[6] A. Erd61yi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integra/ 
Transforms. Vol. I, McGraw-Hill, New York-Toronto-London, 1954. Based, in 
part, on notes left by Harry Bateman. 

[7] S. S. Gelbart, Weil's representation and the spectrum of the metaplectic group, 
Lecture Notes in Mathematics, Vol. 530, Springer-Verlag, Berlin, 1976. 

[8] I. M. Gelfand and D. A. Kazhdan, Representations of the group GL(n, K) where 
K is a local field, in Lie Groups and Their Representations (Proc. Summer School, 
Bolyai J£nos Math. Soc., Budapest, 1971), Halsted, New York, 1975, pp. 95-118. 

[9] R. Godement, Notes on Jacquet Langlands Theory, The Institute for Advanced 
Study, Princeton, N J, 1970. 

[10] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in 
Mathematics, Vol. 114, Springer-Verlag, Berlin, 1970. 



Vol. 145, 2005 BESSEL IDENTITIES 81 

[11] H. Jacquet, On the nonvanishing of some L-functions, Proceedings of the Indian 
Academy of Sciences. Mathematical Sciences !}7 (1987), 117-155 (1988). 

[12] D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Publications Math6- 
matiques de l'Institut des Hautes Etudes Scientifiques 59 (1984), 35-142. 

[13] A. W. Knapp, Representation Theory of Semisimple Groups, Princeton Mathe- 
matical Series, Vol. 36, Princeton University Press, Princeton, N J, 1986. An 
overview based on examples. 

[14] N. N. Lebedev, Special Ehnctions and their Applications, Dover, New York, 1972. 
Revised edition, translated from the Russian and edited by Richard A. Silverman. 
Unabridged and corrected republication. 

[15] Y. Motohashi, A note on the mean value of the zeta and L-functions. XII, 
Proceedings of the Japan Academy. Series A. Mathematical Sciences 78 (2002), 
no. 3, 36-41. 

[16] F. Shahidi, Whittaker models for real groups, Duke Mathematical Journal 47 
(1980), 99-125. 

[17] J. A. Shalika, The multiplicity one theorem for GLn, Annals of Mathematics (2) 
100 (1974), 171-193. 

[18] D. Soudry, The L and 7 factors for generic representations of GSp(4, k) x GL(2, k) 
over a local non-Archimedean field k, Duke Mathematical Journal 51 (1984), 
355-394. 

[19] V. S. Varadarajan, The method of stationary phase and applications to geometry 
and analysis on Lie groups, in Algebraic and Analytic Methods in Representa- 

tion Theory (Sonderborg, 1994), Perspectives in Mathematics, Vol. 17, Academic 
Press, San Diego, 1997, pp. 167-242. 

[20] N. Ja. Vilenkin, Special F-hnctions and the Theory of Group Representations, 
Translations of Mathematical Monographs, Vol. 22, American Mathematical 
Society, Providence, RI, 1968. 

[21] J.-L. Waldspurger, Correspondance de Shimura, Journal de Math6matiques Pures 
et Appliqu6es (9) 59 (1980), 1-132. 

[22] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Mathe- 
maticum 3 (1991), 219-307. 

[23] N. R. Wallach, Real Reductive Groups. I, Academic Press, Boston, 1988. 

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge 
University Press, Cambridge, 1995. Reprint of the second (1944) edition. 


